Skip to main content
Log in

Unexpected hardening effects in bilayered gel beams

  • Active Behavior in Soft Matter and Mechanobiology
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A classical problem in structural mechanics is the evaluation of beam stretching and curvature in slender bilayered beams, due to mechanical actions, thermal distortions, differential growth, and more recently, to swelling. We investigate the non-monotonic changes in the curvature of swollen bilayer beams due to mismatches in physical properties of the two layers starting from a simple structural approach, and discuss the apparent contrast with the well-known Timoshenko’s formula through a scaling analysis. Due to the large strains involved in the problem, we also discuss the problem through a thermodynamics based on Gent model for the elastic contribution to the free-energy of the gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Actually, the representation form of the stress \(\sigma\) depends on the above cited incompressibility of the polymer as \(\sigma =G_s\lambda _{os} -\lambda _{os}^2\,p\) with \(G_s=Y_s/(2(1+\nu ))\) and assuming that for incompressible material \(\nu =1/2\) we get \(G_s=Y_s/3\).

References

  1. Agostiniani V, De Simone A (2017) Dimension reduction via Gamma-convergence for soft active materials. Meccanica. doi:10.1007/s11012-017-0630-4

  2. Armon S, Efrati E, Kupferman R, Sharon E (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333(6050):1726–1730. doi:10.1126/science.1203874

    Article  ADS  Google Scholar 

  3. Baek K, Jeong JH, Shkumatov A, Bashir R, Kong H (2013) In situ self-folding assembly of a multi-walled hydrogel tube for uniaxial sustained molecular release. Adv Mater 25(39):5568–5573. doi:10.1002/adma.201300951

    Article  Google Scholar 

  4. Cai S (2015) Bending a beam by a generalized ideal elastomeric gel. Proc R Soc Lond A Math Phys Eng Sci 471(2175). doi:10.1098/rspa.2014.0919, http://rspa.royalsocietypublishing.org/content/471/2175/20140919, http://rspa.royalsocietypublishing.org/content/471/2175/20140919.full

  5. De Tommasi D, Puglisi G, Zurlo G (2013) Inhomogeneous deformations and pull-in instability in electroactive polymeric films. Int J Non Linear Mech 57:123–129. doi:10.1016/j.ijnonlinmec.2013.06.008, http://www.sciencedirect.com/science/article/pii/S0020746213001236

  6. Drozdov A, deClaville Christiansen J (2016) Swelling-induced bending of bilayer gel beams. Compos Struct. doi:10.1016/j.compstruct.2016.06.076, http://www.sciencedirect.com/science/article/pii/S0263822316310716

  7. Erb RM, Sander JS, Grisch R, Studart A (2013) Self-shaping composites with programmable bioinspired microstructures. Nat Commun 4(10):1712. doi:10.1038/ncomms2666

    Article  ADS  Google Scholar 

  8. Fang Y, Pence TJ, Tan X (2008) Nonlinear elastic modeling of differential expansion in trilayer conjugated polymer actuators. Smart Mater Struct 17:065020

    Article  ADS  Google Scholar 

  9. Flory PJ, Rehner J (1943a) Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  ADS  Google Scholar 

  10. Flory PJ, Rehner J (1943b) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11(11):521–526

    Article  ADS  Google Scholar 

  11. Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61. doi:10.5254/1.3538357

    Article  MathSciNet  Google Scholar 

  12. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269(5223):525–527. doi:10.1126/science.269.5223.525, http://science.sciencemag.org/content/269/5223/525, http://science.sciencemag.org/content/269/5223/525.full

  13. Lucantonio A, Nardinocchi P, Teresi L (2013) Transient analysis of swelling-induced large deformations in polymer gels. J Mech Phys Solids 61(1):205–218. doi:10.1016/j.jmps.2012.07.010, http://www.sciencedirect.com/science/article/pii/S0022509612001548

  14. Lucantonio A, Nardinocchi P, Pezzulla M (2014) Swelling-induced and controlled curving in layered gel beams. Proceedings of the royal society A: mathematical, physical and engineering science 470(2171):20140467. doi:10.1098/rspa.2014.0467

  15. Lucantonio A, Teresi L, DeSimone A (2016) Continuum theory of swelling material surfaces with applications to thermo-responsive gel membranes and surface mass transport. J Mech Phys Solids 89:96–109. doi:10.1016/j.jmps.2016.02.001, http://www.sciencedirect.com/science/article/pii/S0022509616300746

  16. Morimoto T and Ashida F (2015) Temperature-responsive bending of a bilayer gel. Int J Solids Struct 5657:20–28. doi:10.1016/j.ijsolstr.2014.12.009, http://www.sciencedirect.com/science/article/pii/S0020768314004776

  17. Nardinocchi P and Puntel E (2016) Finite bending solutions for layered gel beams. Int J Solids Struct 90:228–235. doi:10.1016/j.ijsolstr.2016.02.026, http://www.sciencedirect.com/science/article/pii/S0020768316000883

  18. Nardinocchi P, Pezzulla M, Teresi L (2015) Steady and transient analysis of anisotropic swelling in fibered gels. J Appl Phys 118(24):244904. doi:10.1063/1.4938737

    Article  ADS  Google Scholar 

  19. Puglisi G and Saccomandi G (2015) The gent model for rubber-like materials: an appraisal for an ingenious and simple idea. Int J Non Linear Mech 68:17–24. doi:10.1016/j.ijnonlinmec.2014.05.007, http://www.sciencedirect.com/science/article/pii/S0020746214001097, mechanics of Rubber - in Memory of Alan Gent

  20. Timoshenko S (1925) Analysis of bimetal thermostats. JOSA 11:233–255

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.P. acknowledges the National Group of Mathematical Physics (GNFM-INdAM) for support (Young Researcher Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Nardinocchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardinocchi, P., Puntel, E. Unexpected hardening effects in bilayered gel beams. Meccanica 52, 3471–3480 (2017). https://doi.org/10.1007/s11012-017-0635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0635-z

Keywords

Mathematics subject classification

Navigation