Skip to main content
Log in

Dean instability in ferrofluids

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The linear instability of the Dean-flow is considered in ferrohydrodynamics (FHD) with respect to the axisymmetric and the non-axisymmetric perturbations. The onset of the instability is influenced by the applied magnetic field, acting along the axis of the cylinders. The applied magnetic field may advance or delay the onset of the instability, depending upon its magnitude and the radius ratio of the cylinders. The preferred mode for the onset of the instability in the Dean problem remains axisymmetric in the presence of the applied magnetic field just as in the absence of the magnetic field. The onset of the instability depends very little on the magnetic nature of the boundaries. The numerical computations indicate that the principle of exchange of stability is valid for the FHD Dean problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dean WR (1928) Fluid motion in curved channel. Philos Mag 5:402–420

    Article  MATH  Google Scholar 

  2. Drazin P, Reid W (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Gelfgat AY, Yarin AL, Bar-Yoseph PZ (2001) Three-dimensional instability of a two-layer Dean flow. Phys Fluids 13(11):3185–3195

    Article  ADS  MATH  Google Scholar 

  4. Aider AA, Kadem L (2011) Transition to turbulence of the Dean and Taylor–Couette flows: similarities. Workshop Multiphys, Barcelona 35(3A):1–12

    Google Scholar 

  5. Reid WH (1958) On the stability of viscous flow in curved channel. Proc R Soc Lond 244:186–198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Walowit J, Tsao S, DiPrima RC (1964) Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient. J Appl Mech 31(4):585–593

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibbson RD, Cook AE (1974) The stability of curved channel flow. Q J Mech Appl Math 27(2):149–160

    Article  Google Scholar 

  8. Finlay WH, Nandkumar K (1990) Onset of two-dimensional cellular flow in finite curved channels of large aspect ratio. Phys Fluids A 2:1163–1174

    Article  ADS  Google Scholar 

  9. Joo YL, Shaqfeh SG (1992) A purely elastic instability in Dean and Taylor–Dean flow. Phys Fluids A 4(3):524–543

    Article  ADS  MATH  Google Scholar 

  10. Nandkumar K, Mees PAJ, Masliyah JH (1993) Multiple, two-dimensional solutions to the dean problem in curved triangular ducts. Phys Fluids A 5:1182–1187

    Article  ADS  MATH  Google Scholar 

  11. Hains PE, Denier JP, Bossom AP (2013) The Dean instability for shear-thinning fluids. J Non-Newton Fluid Mech 198:125–135

    Article  Google Scholar 

  12. Chandrasekhar S, Elbert DD, Lebovitz NR (1961) The stability of viscous flow in curved channel in the presence of magnetic field. Proc R Soc Lond 264:155–164

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Rosenswieg RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  14. Bashtovoy VG, Berkowsky BM, Vislovich AN (1988) Introduction to thermomechanics of magnetic fluids. Springer, Berlin

    Google Scholar 

  15. Blums E, Cebers A, Maiorov MM (1997) Magnetic fluids. W. de Gruyter, Berlin

    Google Scholar 

  16. Scheer C, Figueiredo AM (2005) Neto. Ferrofluids: properties and applications. Braz J Phys 35(3A):718–727

    Article  ADS  Google Scholar 

  17. Stiles PJ, Kagan M (1996) The influence of particle diffusion on the Couette–Taylor instability of a radially magnetized ferrofluid. J Colloid Interface Sci 179:628–630

    Article  Google Scholar 

  18. Niklas M, Müller Krumbhaar H, Lücke MH (1989) Taylor vortex flow of ferrofluids in the presence of general magnetic fields. J Magn Magn Mater 81:29–38

    Article  ADS  Google Scholar 

  19. Kikura H, Aritomi M, Takeda Y (2005) Velocity measurement on Taylor–Couette flow of a magnetic fluid with small aspect ratio. J Magn Magn Mater 289:342–345

    Article  ADS  Google Scholar 

  20. Odenbach S, Gilly H (1996) Taylor vortex flow of magnetic fluids under the influence of an azimuthal magnetic field. J Magn Magn Mater 152:123–128

    Article  ADS  Google Scholar 

  21. Singh J, Bajaj R (2005) Couette flow in ferrofluids with magnetic field. J Magn Magn Mater 294:53–62

    Article  ADS  Google Scholar 

  22. Singh J, Bajaj R (2006) Stability of ferrofluid flow in rotating porous cylinders with radial flow. Magnetohydrodynamics 42:46–56

    ADS  Google Scholar 

  23. Singh J, Bajaj R (2005) Stability of non-axisymmetric ferrofluid flow in rotating cylinders with magnetic field. Int J Math Math Sci 23:3727–3737

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh J, Bajaj R (2006) Non-axisymmetric modes of Couette–Taylor instability in ferrofluids with radial flow. Magnetohydrodynamics 42:57–68

    ADS  Google Scholar 

  25. Singh J, Bajaj R (2008) Parametric modulation of the Taylor–Couette flow in ferrofluids. Fluid Dyn Res 40:737–752

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kikura H, Takeda Y, Durst F (1999) Velocity profile measurement of the Taylor vortex flow of a magnetic fluid using the ultrasonic Doppler method. Exp Fluids 26:208–214

    Article  Google Scholar 

  27. Altmeyer S, Hoffmann Ch, Leschhorn A, Lücke M (2010) Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor–Couette system. Phys Rev E 82:016321

    Article  ADS  Google Scholar 

  28. Altmeyer S, Leschhorn A, Hoffmann Ch, Lücke M (2013) Elongation flow effects on the vortex growth out of Couette flow in ferrofluids. Phys Rev E 87:053010

    Article  ADS  Google Scholar 

  29. Aminfar H, Mohammadpourfard M, Kahnamouei YN (2014) Numerical study of magnetic field effects on mixed convection of a magnetic nanofluid in a curved tube. Int J Mech Sci 78:81–90

    Article  Google Scholar 

  30. Krekhov AP, Shliomis MI, Kamiyama S (2005) Ferrofluid pipe flow in an oscillating magnetic field. Phys Fluids 17:0331051–0331058

    Article  MATH  Google Scholar 

  31. Shliomis MI (1972) Effective viscosity of magnetic suspensions. Sov Phys JETP 34:1291–1294

    ADS  Google Scholar 

  32. Shliomis MI (2001) Ferrohydrodynamics: testing a third magnetization equation. Phys Rev E 64:060501

  33. Leschhorn A, Lücke M, Hoffmann C, Altmeyer S (2009) Stability of the circular couette flow of a ferrofluid in an axial magnetic field: influence of polydispersity. Phys Rev E 79:036308

    Article  ADS  Google Scholar 

  34. Shliomis MI, Morozov KI (1994) Negative viscosity of ferrofluid under alternating magnetic field. Phys Fluids 6:2855–2861

    Article  ADS  MATH  Google Scholar 

  35. Deka RK, Takhar HS (2004) Hydrodynamic stability of viscous flow between curved porous channel with radial flow. Int J Eng Sci 42:953–966

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referee for the constructive criticism and the suggestions regarding improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Bajaj, R. Dean instability in ferrofluids. Meccanica 51, 835–847 (2016). https://doi.org/10.1007/s11012-015-0252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0252-7

Keywords

Mathematics Subject Classification

Navigation