Skip to main content
Log in

Nonlinear and linearised behaviour of the Levitron®

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper presents a magneto-rotordynamic model that allows to obtain the nonlinear equations of motion for all rigid body modes of the Levitron®. These equations describe the complete dynamic behaviour of the spinning top and highlight the presence of stability fields related to its spin speed and vertical position of levitation. The developed model takes into account the effect of the aerodynamic drag torque on the sides of the spinning top too. An experimental investigation has been developed to experimentally identify the complex dynamic behaviour of the spinning top; a dedicated test bench and some tests are discussed. By means of the numerical integration of the equations of motion, the spatial trajectories of the spinning top have been computed and validated by comparison with the experimental test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

L :

Lagrangian function of a dynamic system

q i , \( \dot{q}_{i} \) :

i-th generalized coordinate displacement and velocity

Q i :

Generalized force applied to the i-th generalized coordinate

U :

Potential energy

\( {\varvec{\mathcal{M}}} \), \( {\mathbf{B}} \) :

Residual magnetization vector and magnetic flux density vector

F, T :

Magnetic force and torque vectors

∇, ×:

Rotor operator, external product

M, I, G :

Linear mass, inertial and gyroscopic matrices

C tr , C rot :

Linear translational and rotational damping matrices

K tr , K rot , K c :

Linear translational, rotational and coupling stiffness matrices

I nl , R nl , S nl , T nl , Q nl :

Nonlinear matrices and vectors

B x , B y , B z , J B :

Components of the magnetic flux density vector and Jacobian matrix

x, y, z, ψ, χ, φ :

Displacement and rotational degrees of freedom of the spinning top

\( \bar{x},\,\,\,\bar{y},\,\,\,\bar{z},\,\,\,\bar{\psi },\,\,\,\bar{\chi },\,\,\bar{\varphi } \) :

Displacement and rotational degrees of freedom of the spinning top referred to its equilibrium position

m, I P , I T :

Mass, polar and transversal inertia of the spinning top

k tr , k rot , k c :

Stiffness terms of translational, rotational and coupling behaviour

c tr , c rot :

Damping terms of translational and rotational behaviour

A 0, A 1, A 2, B 0, D 0, D 1 :

Taylor coefficients

B r , M :

Residual magnetic flux density of the base magnet and magnetization of the spin volume

V, S, A :

Respectively magnetic volume, static moment and area of the spinning top

g :

Constant of gravity

l g :

Distance between centre of gravity and magnetic volume centre of the spinning top

e, i, π:

Respectively Nepero number, imaginary operator, pi-greco

q :

Planar complex coordinate vector

r, η :

Planar complex translational and rotational coordinates of the spinning top referred to its equilibrium position

M pl , G pl , C pl , K pl :

Linear mass, gyroscopic, damping and stiffness matrices for the planar behaviour

s, σ, λ :

Eigenvalue, decay rate and natural frequency

M a :

Aerodynamic drag torque

C m :

Non-dimensional coefficient of the aerodynamic drag torque

R e :

Reynolds number

r o  = 15 mm:

Outer diameter of the spinning top

ω :

Angular speed of the spinning top

ρ a  = 1.225 kg/m3 :

Air density

ρ :

Material density

μ a  = 1.81 × 10−5 kg/m/s:

Air dynamic viscosity (normal condition of 20 °C)

c v  = 1.07 × 10−8 Nms/rad:

Equivalent viscous damping coefficient

x eq  = 29.6 mm:

Reference vertical equilibrium levitating position of the spinning top

ω min , ω max :

Minimum and maximum angular speed stability limits

ω x :

Fundamental harmonic of the vertical oscillatory behaviour

x min , x max :

Minimum and maximum vertical stability limits

t, T :

Time and simulation time

References

  1. Earnshaw S (1842) On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans Camb Philos Soc 7(116):97–112

    ADS  Google Scholar 

  2. Berry MV (1996) The Levitron™: an adiabatic trap for spins. Proc R Soc Lond 452:1207–1220

    Article  ADS  Google Scholar 

  3. Simon MD, Heflinger LO, Ridgway SL (1997) Spin stabilized magnetic levitation. Am J Phys 65(4):286–292

    Article  ADS  Google Scholar 

  4. Jones TB, Washizu M, Gans R (1997) Simple theory for the Levitron. J Appl Phys 82(2):883–888

    Article  ADS  Google Scholar 

  5. Gans RF, Jones TB, Washizu M (1998) Dynamics of the Levitron™. J Appl Phys D 31(6):671–679

    Article  ADS  Google Scholar 

  6. Gov S, Shtrikman S, Thomas H (1999) On the dynamical stability of the hovering magnetic top. Phys D 126:214–224

    Article  MathSciNet  MATH  Google Scholar 

  7. Flanders P, Gov S, Shtrikman S, Thomas H (1999) On the spinning motion of the hovering magnetic top. Phys D 126:225–235

    Article  MathSciNet  MATH  Google Scholar 

  8. Gov S, Shtrikman S (1999) How high can the U-CAS fly? pp 1–20. arXiv:physics/9902002v1[physics.class-ph]

  9. Genta G, Delprete C, Rondano D (1999) Gyroscopic stabilization of passive magnetic levitation. Meccanica 34:411–424

    Article  MathSciNet  MATH  Google Scholar 

  10. Dullin HR, Easton RW (1999) Stability of Levitrons. Phys D 126:1–17

    Article  MathSciNet  MATH  Google Scholar 

  11. San Miguel A (2005) Numerical integration for the dynamics of the heavy magnetic top. Phys A 335:235–244

    MATH  Google Scholar 

  12. Bonisoli E, Delprete C, Vigliani A (2005) Dinamica magneto-elastica del Levitron. In: 17th AIMETA congress of theoretical and applied mechanics, Firenze, I, full text in CD Rom

  13. Krechetnikov R, Marsden JE (2006) On destabilizing effects of two fundamental non-conservative forces. Phys D 214:25–32

    Article  MathSciNet  MATH  Google Scholar 

  14. De Grève Z, Versèle C, Lobry J (2010) Gyroscopic magnetic levitation: an original procedure based on the finite element method. Eur Phys J Appl Phys 52(02):1–7

    Article  Google Scholar 

  15. Bonisoli E, Delprete C, Silvestri M (2011) Eigenvalues and nonlinear behaviour of Levitron. In: Rotating machinery, structural health monitoring, shock and vibration, pp 245–256. ISBN:978-1-4419-9427-1 5

  16. Geiser J, Lüskow KF (2012) Splitting methods for Levitron problems, pp 1–17. arXiv:1201.1736v1[math-ph]

  17. Geiser J (2013) Multiscale methods for levitron problems: theory and applications. Orig Res Artic Comput Struct 122:27–32

    Article  Google Scholar 

  18. Bonisoli E, Vigliani A (2003) Static behaviour of magneto-elastic forces. In: 16th AIMETA congress of theoretical and applied mechanics, Ferrara, I, full text in CD Rom

  19. Bassani R (2006) Earnshaw (1805–1888) and passive magnetic levitation. Meccanica 41:375–389

    Article  MathSciNet  MATH  Google Scholar 

  20. Gov S, Shtrikman S (1996) Upper bounds on the height of levitation by permanent magnets. In: 19th convention of electrical and electronics engineers in Israel, Jerusalem, IL, pp 184–187

  21. Genta G (1985) Kinetic energy storage—theory and practice of advanced flywheel systems, Butterworths, London. ISBN 0-408-01396-6

  22. Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264

    Article  ADS  MATH  Google Scholar 

  23. Bonisoli E, Delprete C, Vigliani A (2005) Modello e analisi della stabilità di una sospensione magnetica passiva. In: 17th AIMETA congress of theoretical and applied mechanics, Firenze, I, full text in CD Rom

  24. Bonisoli E, Vigliani A (2007) Passive elasto-magnetic suspensions: nonlinear models and experimental outcomes. Mech Res Commun 34:385–394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Bonisoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonisoli, E., Delprete, C. Nonlinear and linearised behaviour of the Levitron® . Meccanica 51, 763–784 (2016). https://doi.org/10.1007/s11012-015-0238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0238-5

Keywords

Navigation