Skip to main content
Log in

Modified geometry of spur gear drives for compensation of shaft deflections

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

One of the main problems when standard spur gears are in mesh is the appearance of edge contact on the gear tooth surfaces caused by misalignments. Those misalignments are caused partially by deflections of gear supporting shafts. As a result of an edge contact, a non-favorable condition of the bearing contact occurs, yielding high level of contact stresses. An intensive research and many practical solutions have been directed to modify the gear tooth surfaces in order to avoid edge contact. An innovative procedure is proposed here for: (1) determination of errors of alignment caused by shaft deflections, (2) compensation of predicted shaft deflections during generation of spur gears, and (3), obtaining a favorable function of transmission errors for the design load. A finite element model of a spur gear drive that comprises pinion and gear supporting shafts is used for the determination of errors of alignment along a cycle of meshing. Compensation of misalignments caused by shaft deflections in gear generation is then accomplished by modification of pinion tooth surfaces whereas the gear tooth surfaces are kept unmodified. Additional modifications of pinion tooth surfaces may be required for obtaining a favorable function of transmission errors. The effect of several misalignment compensations in the reduction of contact stresses has been investigated. Postprocessing of load intensity functions and loaded transmission errors is included. The developed approach is illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Harris SL (1958) Dynamic loads on the teeth of spur gears. Proc Inst Mech Eng 172(2):87–112

    Article  Google Scholar 

  2. Gregory RW, Harris SL, Munro RG (1963) Dynamic behaviour of spur gears. Proc Inst Mech Eng 178(8):207–226

    Article  Google Scholar 

  3. Optiz H (1968) Noise of gears. Phil Trans R Soc 263:369–380

    Article  ADS  Google Scholar 

  4. Bradley W (1973) How to design the noise out of gears. Mach Des 45(30):49

    Google Scholar 

  5. Welbourn DB (1979) Fundamental knowledge of gear noise: a survey. In: Proceedings of noise and vibration of engines and transmissions, Inst Mech Eng, Cranfield, UK, pp 9–14

  6. Drago RJ (1980) How to design quiet transmissions. Mach Des 52(28):175–181

  7. Wildhaber E (1962) Method and machine for producing crowned teeth. United States Patent Office, Patent No 3,046,844

  8. Novikov ML (1956) USSR Patent No 109,750

  9. Litvin FL, Lu J, Townsend DP, Howkins M (1999) Computerized simulation of meshing of conventional helical involute gears and modification of geometry. Mech Mach Theory 34(1):123–147

    Article  MATH  Google Scholar 

  10. Litvin FL, Fuentes A, Gonzalez-Perez I, Carnevali L, Kawasaki K, Handschuh RF (2003) Modified involute helical gears: computerized design, simulation of meshing, and stress analysis. Comp Methods Appl Mech Eng 192:3619–3655

    Article  MATH  Google Scholar 

  11. Litvin FL, Gonzalez-Perez I, Fuentes A, Hayasaka K, Yukishima K (2005) Topology of modified surfaces of involute helical gears with line contact developed for improvement of bearing contact, reduction of transmission errors, and stress analysis. Math Comput Modell 42(9–10):1063–1078

    Article  MATH  Google Scholar 

  12. Höhn B-R (2010) Improvemets on noise reduction and efficiency of gears. Meccanica 45:425–437

    Article  MATH  Google Scholar 

  13. Roda-Casanova V, Iserte-Vilar JL, Sanchez-Marin FT, Fuentes A, Gonzalez-Perez I (2011) Development and comparison of shaft-gear models for the computation of gear misalignments due to power transmission. In: Proceedings of the ASME 2011 international design engineering technical conferences, Washington, DC

  14. Gonzalez-Perez I, Roda-Casanova V, Fuentes A, Sanchez-Marin FT, Iserte JL (2012) A finite element model for consideration of the torsional effect on the bearing contact of gear drives. J Mech Des 134(071007):1–8

    Google Scholar 

  15. Gonzalez-Perez I, Fuentes A, Roda-Casanova V, Sanchez-Marin FT, Iserte JL (2013) A finite element model for stress analysis of lightweight spur gear drives based on thin-webbed and thin-rimmed gears. In: Proceedings of the VDI international conference on gears, Munich

  16. Litvin FL, Fuentes A (2004) Gear Geometry Applied Theory, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  17. Sheveleva GI, Volkov AE, Medvedev VI (2007) Algorithms for analysis of meshing and contact of spiral bevel gears. Mech Mach Theory 42(2):198–215

    Article  MATH  Google Scholar 

  18. Fuentes A, Iserte JL, Gonzalez-Perez I, Sanchez-Marin FT (2011) Computerized design of advanced straight and skew bevel gears produced by precision forging. Comput Methods Appl Mech Eng 200(29–32):2363–2377

    Article  MATH  ADS  Google Scholar 

  19. Fuentes A, Ruiz-Orzaez R, Gonzalez-Perez I (2014) Computerized design, simulation of meshing, and finite element analysis of two types of geometry of curvilinear cylindrical gears. Comput Methods Appl Mech Eng 272:321–339

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their deep gratitude to the Spanish Ministry of Economy and Competitiveness (MINECO) for the financial support of research projects Refs. DPI2010-20388-C02-01 (financed jointly by FEDER), DPI2013-47702-C2-1, and DPI2013-47702-C2-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Gonzalez-Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Perez, I., Roda-Casanova, V. & Fuentes, A. Modified geometry of spur gear drives for compensation of shaft deflections. Meccanica 50, 1855–1867 (2015). https://doi.org/10.1007/s11012-015-0129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0129-9

Keywords

Navigation