Skip to main content
Log in

Effects of shear-dependent transport properties on lumen surface concentration of LDL particles in stenosed carotid artery

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Growth of stenosis is mainly due to the high concentration of plasma lipoprotein such as low density lipoprotein (LDL) near the art ery walls. Accurate prediction of LDL concentration especially near the stenosis and where the shear stress is low, can help to predict the plaque growth. In this paper, a novel model is introduced to predict the LDL concentration near a plaque. This model is based on variable diffusion coefficient of LDL due to the non-Newtonian behavior of the blood flow in low shear stress regions such as flow around plaques. The new model for diffusion coefficient consists of two parts: the stationary and the shear- induced particle diffusivity due to rotation of red blood cells. The results show that the new model predicts the LDL concentration well and unlike the constant diffusion coefficient which is used by others, produces more physical and meaningful results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Radius of the red blood cells (4 μm)

C :

Concentration of LDL particles (kg/m3)

C 0 :

Inlet concentration of LDL particles (kg/m3)

C w :

Wall concentration of LDL particles (kg/m3)

D :

Diffusion coefficient of LDL particles (m2/s)

D e :

Effective diffusion coefficient of particles (m2/s)

D P :

Shear-induced particle diffusivity (m2/s)

D s :

Brownian molecular diffusion coefficient (m2/s)

l :

Length of the artery (m)

L i :

Upstream length of the arterial stenosis (m)

L o :

Downstream length of the arterial stenosis (m)

m :

Shear rate modifier

P :

Pressure (Pa)

r :

Radial coordinate

R 0 :

Radius of vessel (3.5 mm)

Re :

Mean inlet Reynolds number

Sc :

Schmidt number (Sc = ν/D)

u :

Velocity vector (m/s)

u r :

Velocity component in radial direction (m/s)

u z :

Velocity component in axial direction (m/s)

U 0 :

Inlet average velocity (m/s)

V w :

Filtration velocity (4 × 10−8 m/s)

WSS :

Wall Shear Stress (Pa)

z :

Axial coordinate

λ :

Constant parameter for stenosis severity

ρ :

Blood density (1,050 kg/m3)

µ:

Blood viscosity (0.0035 kg/m.s)

µ c :

Limiting high shear rate Newtonian viscosity (kg/m.s)

ν :

Kinematic viscosity (m2/s)

τ y :

Blood yield stress (Pa)

ϕ P :

Hematocrit

References

  1. Wang G, Deng X, Guidoin R (2003) Concentration polarization of macromolecules in canine carotid arteries and its implication for the localization of atherogenesis. J Biomech 36:45–51

    Article  Google Scholar 

  2. Meng W, Yu F, Chen H, Zhang J, Zhang E, Dian K, Shi Y (2009) Concentration polarization of High-Density Lipoprotein and its relation with shear stress in an in vitro model. J Biomed Biotechnol 2009:1–9

    Article  ADS  Google Scholar 

  3. Shukla JB, Parihar RS, Gupta SP (1980) Effects of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull Math Biol 42:797–805

    Article  MATH  Google Scholar 

  4. Chaturani P, Samy RP (1985) A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial disease. Biorheology 22:521–531

    Google Scholar 

  5. Mistra JC, Chakravarty S (1986) Flow in arteries in the presence of stenosis. J Biomech 19:907–918

    Article  Google Scholar 

  6. Prosi M, Zunino P, Perktold K, Quarteroi A (2005) Mathematical and numerical models for transfer of low-density lipoprotein through the arterial walls: a new methodology for the model set up with applications to the study of disturbed luminal flow. J Biomech 38:903–917

    Article  Google Scholar 

  7. Rappitsch G, Perktold K (1996) Pulsatile albumin transport in large arteries: a numerical simulation study. J Biomech Eng 118:511–519

    Article  Google Scholar 

  8. Fatouraee N, Deng XY, Champlain A, Guidoin R (1998) Concentration polarization in the arterial system. Ann NY Acad Sci 858:137–146

    Article  ADS  Google Scholar 

  9. Kaazempur-Mofrad MR, Ethier CR (2001) Mass transport in an anatomically realisitic human right coronary artery. Ann Biomed Eng 29:121–127

    Article  Google Scholar 

  10. Kaazempur-Mofrad MR, Wada S, Myers JG, Ethier CR (2005) Mass transport and fluid flow in stenotic arteries: axisymmetric and asymmetric models. Int J Heat Mass Tranf 48:4510–4517

    Article  MATH  Google Scholar 

  11. Qiu Y, Tarbell JM (2000) Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Ann Biomed Eng 28:26–38

    Article  Google Scholar 

  12. Wada S, Karino T (2002) Theoretical prediction of Low-Density Lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann Biomed Eng 30:778–791

    Article  Google Scholar 

  13. Wada S, Koujiya M, Karino T (2002) Theoretical study of the effect of local flow disturbances on the concentration of low density lipoproteins at the luminal surface of end-to-end anastomosed vessels. Med Biol Eng Comput 40:576–587

    Article  Google Scholar 

  14. Deng XY, Wang G (2003) Concentration polarization of atherogenic lipids in the arterial system. Sci Sin 46:153–164

    Google Scholar 

  15. Fazli S, Shirani E, Sadeghi MR (2011) Numerical simulation of LDL mass transfer in a common carotid artery under pulsatile flows. J Biomech 44:68–76

    Article  Google Scholar 

  16. Soulis J, Giannoglou G (2009) Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch. Op Cardiovasc 3:128–142

    Article  Google Scholar 

  17. Moore JA, Ethier CR (1997) Oxygen mass transfer calculations in large arteries. J Biomech Eng 119:469–475

    Article  Google Scholar 

  18. Sun N, Wood BW, Hughes AD, Thom SAM, Xu XY (2006) Fluid-wall modeling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng 34:1119–1128

    Article  Google Scholar 

  19. Olgac U, Kurtcuoglu V, Poulikakos D (2008) Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am J Physiol Heart Circ Physiol 294:H909–H919

    Article  Google Scholar 

  20. Yang N, Vafai K (2006) Modeling of low-density lipoprotein (LDL) transport in the artery-effects of hypertension. Int J Heat Mass 49:850–867

    Article  MATH  Google Scholar 

  21. Yang N, Vafai K (2008) Low density lipoprotein (LDL) transport in an artery- A simplified analytical solution. Int J Heat Mass 51:497–505

    Article  MATH  Google Scholar 

  22. Ai L, Vafai K (2006) A coupling model for macromolecule transport in a standards arterial wall. Int J Heat Mass 49:1568–1591

    Article  MATH  Google Scholar 

  23. Khakpour M, Vafai K (2008) A critical assessment of arterial transport models. Int J Heat Mass 51:807–822

    Article  MATH  Google Scholar 

  24. Khakpour M, Vafai K (2008) Effects of gender-related geometrical characteristics of aorta-iliac bifurcation on hemodynamics and macromolecule concentration distribution. Int J Heat Mass 51:5542–5551

    Article  MATH  Google Scholar 

  25. Sun N, Wood NB, Hughes AD, Thom SA, Xu XY (2007) Effecs of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am J Physiol Heart Circ Physiol 292:H31148–H33157

    Article  Google Scholar 

  26. Chung S, Vafai K (2012) Effect of the Fluid-Structure Interactions on Low-Density Lipoprotein within a Multi-Layered Arterial Wall. J Biomech 45:371–381

    Article  Google Scholar 

  27. Chung S, Vafai K (2013) Low-density lipoprotein transport within a multi-layered arterial wall—effect of the atherosclerotic plaque/stenosis. J Biomech 46:574–585

    Article  Google Scholar 

  28. Chien S (1982) Hemorheology in clinical medicine. Clin Hemorheol 2:137–142

    Google Scholar 

  29. Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. Taylor and Francis, New York

    Book  Google Scholar 

  30. Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear flow of a suspension. J Fluid Mech 79:191–208

    Article  ADS  Google Scholar 

  31. Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    Article  MATH  ADS  Google Scholar 

  32. Karthik M, Ayyaswamy PSM (2008) Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects. Phys Rev 78:036303

    Google Scholar 

  33. Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. Springer, New York

    Book  Google Scholar 

  34. Bishop J, Popel S, Intaglietta M, Johnson C (2002) Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules. Am J Physiol Heart Circ Physiol 283:H1985–H1996

    Article  Google Scholar 

  35. Michanetzis GPA, Missirlis YF (1996) Flow-dependent platelet behavior in blood-material interactions. J Mater Sci Mater Med 7:29–33

    Article  Google Scholar 

  36. Cha W, Beissinger R (2001) Evaluation of shear-Induced particle diffusivity in red cell ghosts suspensions. Korean J Chem Eng 18:479–485

    Article  Google Scholar 

  37. Back LH (1975) Theoretical investigation of mass transport to arterial walls in various blood flow regions, Part 1: flow field and lipoprotein transport, Part 2: oxygen transport and its relationship to lipoprotein accumulation. Mathl Biosci 27(231–262):263–285

    Article  MATH  Google Scholar 

  38. Zydney AL, Colton CK (1982) Continuous flow membrane plasmaphersis: theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Int Org 28:408–412

    Google Scholar 

  39. Zydney AL, Colton CK (1988) Augmented solute transports ha the shear flow of a concentrated suspension. Phys Hydro 10:77–96

    Google Scholar 

  40. Sorensen EN (2002) Computational simulation of platelet transport, activation and deposition. PhD thesis, University of Pittsburgh

  41. Saadatmand M, Ishikawa T, Matsuki N, Abdekhodaie MJ, Imai Y, Ueno H, Yamaguchi T (2011) Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J Biomech 44:170–175

    Article  Google Scholar 

  42. Liu X, Fan Y, Deng X (2011) Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. J Theor Biol 283:71–81

    Article  Google Scholar 

  43. Keller KH (1969) Mass transport phenomena in biological system. Plenum Press, New York

    Book  Google Scholar 

  44. Hund SJ, Antaki JF (2009) An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys Med Biol 54:6415–6435

    Article  Google Scholar 

  45. Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW (1991) Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler Thromb 11:1844–1852

    Article  Google Scholar 

  46. Liao W, Lee TS, Low HT (2004) Numerical studies of physiological pulsatile flow through constricted tube. Int J of Numer Method Heat Fluid Flow 14:689–713

    Article  MATH  Google Scholar 

  47. Li X, Wen G, Li D (2001) Computer simulation of non-Newtonian flow and mass transport through coronary arterial stenosis. Appl Math Mech 22:409–424

    Article  MATH  Google Scholar 

  48. Hutchinson BR, Raithby GD (1986) A multigrid method based on the additive correction strategy. Numer Heat Transf 9:511–537

    Article  ADS  Google Scholar 

  49. Majumdar S (1988) Role of under relaxation in momentum interpolation for calculation of flow with nonstaggered grids. Numer Heat Trans 13:125–132

    ADS  Google Scholar 

  50. Huang H, Modi VJ, Seymour BR (1995) Fluid mechanics of stenosed arteries. Int J Eng Sci 33:815–828

    Article  MATH  Google Scholar 

  51. Johnson JS, Dresner L, Kraus KA (1966) Hyperfiltration in principles of desalination. Academic Press 1:225–230

    Google Scholar 

  52. Nerem R (1992) Vascular fluid mechanics, arterial wall and atherosclerosis. ASME J Biomech Eng 114:274–282

    Article  Google Scholar 

  53. Lou Z, Yang WJ (1992) Biofluid dynamics at arterial bifurcations. Crit Rev Biomed Eng 19:455–493

    Google Scholar 

  54. Marshall I (2011) Targeted particle tracking in computational models of human carotid bifurcations. J Biomech Eng Trans ASME 133:124501

    Article  Google Scholar 

  55. Kleinstreuer C, Hyun S, Buchanan JR, Longest PW, Archie JP, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29:1–64

    Article  Google Scholar 

  56. Wang GX, Ye LQ, Tang CJ, Wei DH, Lei DX, He X (2008) Role of LDL concentration polarization in the atherogenesis by numerical simulation and animal experiment. Cell Bio Int 32:S1–S67

    Article  Google Scholar 

  57. Back LH, Cho YI, Crawford DW, Cuffel RF (1984) Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man. J Biomech Eng 106:48–53

    Article  Google Scholar 

  58. Becker RC (1993) The role of blood viscosity in the development and progression of coronary artery disease. CCJM 60:353–358

    Google Scholar 

  59. Johnston BM, Johnston PR, Corney S, Kilpatrick D (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 37:709–720

    Article  Google Scholar 

  60. Soulis JV, Giannoglou GD, Chatzizisis YS, Seralidou KV, Parcharidis GE, Louridas GE (2008) Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Med Eng Phys 30:9–19

    Article  Google Scholar 

  61. Deng X, Marois Y, King M, Guidoin R (1994) Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis. ASAIO J 40:186–191

    Article  Google Scholar 

  62. Chen CN, Chang SF, Lee PL, Chang K, Chen LJ, Usami S, Chien S, Chiu JJ (2006) Neutrophils, lymphocytes, and monocytes show differential behaviors of transendothelial and subendothelial migrations under coculture with smooth muscle cells and disturbed flow. Blood 107:1933–1942

    Article  Google Scholar 

  63. Deng XY, Marois Y, How T, Merhi Y, King WM, Guidoin R (1995) Luminal surface concentration of lipoprotein LDL and its effect on the wall uptake by canine carotid arteries. J Vasc Surg 21:135–145

    Article  Google Scholar 

  64. Smedby O (1997) Do plaques grow upstream or downstream? An angiographic study in the femoral artery. Arterioscler Thromb Vasc Biol 17:912–918

    Article  Google Scholar 

  65. Zhang Z, Deng X, Fan Y (2007) Ex vitro experimental study on concentration polarization of macromolecules (LDL) at an arterial stenosis. Sci China Ser C Life Sci 50:486–491

    Article  Google Scholar 

Download references

Acknowledgments

We thank Department of Mechanical Engineering in Isfahan University of Technology of Iran for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Shirani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, A., Shirani, E., Sadeghi, M.R. et al. Effects of shear-dependent transport properties on lumen surface concentration of LDL particles in stenosed carotid artery. Meccanica 50, 1733–1746 (2015). https://doi.org/10.1007/s11012-015-0120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0120-5

Keywords

Navigation