Skip to main content
Log in

Effect of time-dependent heat source/sink on slip flow and heat transfer from a stretching surface with homotopy analysis method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the effect of time-dependent heat source/sink on heat transfer characteristics of the unsteady mixed convection flow over an exponentially stretching surface are investigated analytically. Both hydrodynamic and thermal slip conditions are considered in this flow. The fluid viscosity is assumed to vary as a reciprocal linear function of temperature. The governing equations are simplified by suitable transformations into a system of dimensionless ordinary differential equations. The reduced equations are then solved analytically by the homotopy analysis method (HAM). The convergence of the HAM solution is obtained by plotting \(\hbar \)-curves for velocity and temperature gradients. Solutions of the velocity profiles, the temperature profiles, the local skin friction coefficient and the local heat transfer rate are obtained for some representative values of the variable viscosity parameter \(\Theta \), mixed convection parameter ξ, velocity slip parameter \(\Gamma \), thermal slip parameter \(\delta \) and heat source/sink parameter Q H .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  2. Vleggaar J (1977) Laminar boundary-layer behaviour on continuous, accelerating surfaces. Chem Eng Sci 32:1517–1525

    Article  Google Scholar 

  3. Soundalgekar VM, Ramana Murty TV (1980) Heat transfer past a continuous moving plate with variable temperature. Wärme- und Stoffü bertragung 14:91–93

    Article  ADS  Google Scholar 

  4. Banks WHH (1983) Similarity solutions of the boundary-layer equations for a stretching wall. J Mec Theor Appl 2:375–392

    MATH  MathSciNet  Google Scholar 

  5. Rajagopal KR, Na TY, Gupta AS (1984) Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta 23:213–215

    Article  Google Scholar 

  6. Dandapat BS, Gupta AS (1989) Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 24:215–219

    Article  MATH  Google Scholar 

  7. Ali ME (1994) Heat transfer characteristics of a continuous stretching surface. Wärme- und Stoffübertragung 29:227–234

    Article  ADS  Google Scholar 

  8. Howell GT, Jeng DR, DeWitt KT (1997) Momentum and heat transfer on a continuous moving surface in a power-law fluid. Int J Heat Mass Transf 40:1853–1861

    Article  MATH  Google Scholar 

  9. Chen C-H (2000) Mixed convection cooling of a heated, continuously stretching surface. Heat Mass Transf 36:79–86

    Article  ADS  Google Scholar 

  10. Datti PS, Prasad KV, Abel MS, Joshi A (2004) MHD visco-elastic fluid flow over a non-isothermal stretching sheet. Int J Eng Sci 42:935–946

    Article  MATH  Google Scholar 

  11. Gorla RSR, Abboud DE, Sarmah A (1998) Magnetohydrodynamic flow over a vertical stretching surface with suction and blowing. Heat Mass Transf 34:121–125

    Article  ADS  Google Scholar 

  12. Afify AA (2004) MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass Transf 40:495–500

    Article  ADS  Google Scholar 

  13. Ali ME (2004) The buoyancy effects on the boundary layers induced by continuous surfaces stretched with rapidly decreasing velocities. Heat Mass Transf 40:285–291

    Article  ADS  Google Scholar 

  14. Abo-Eldahab EM, Abd El-Aziz M (2004) Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int J Therm Sci 43:709–719

    Article  Google Scholar 

  15. Abd El-Aziz M (2006) Thermal radiation effects on magnetohydrodynamic mixed convection flow of a micropolar fluid past a continuously moving semi-infinite plate for high temperature differences. Acta Mecc 187:113–127

    Article  MATH  Google Scholar 

  16. Abd El-Aziz M, Salem AM (2007) MHD mixed convection and mass transfer through a vertical stretching sheet with diffusion of chemically reactive species and space or temperature dependent heat source. Can J Phys 85(4):359–373

    Article  ADS  Google Scholar 

  17. Salem AM, Abd El-Aziz M (2008) Effect of Hall currents and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption. Appl Math Model 32:1236–1254

    Article  MATH  MathSciNet  Google Scholar 

  18. Ali ME, Magyari E (2007) Unsteady fluid and heat flow induced by a submerged stretching surface while its steady motion is slow down gradually. Int J Heat Mass Transf 50:188–195

    Article  MATH  Google Scholar 

  19. Abd El-Aziz M (2009) Radiation effect on the flow and heat transfer over an unsteady stretching sheet. Int Commun Heat Mass Transf 36:521–524

    Article  MathSciNet  Google Scholar 

  20. Abd El-Aziz M (2010) Flow and heat transfer over an unsteady stretching surface with Hall effect. Meccanica 45(1):97–109

    Article  MATH  MathSciNet  Google Scholar 

  21. Abd El-Aziz M (2010) Unsteady fluid and heat flow induced by a stretching sheet with mass transfer and chemical reaction. Chem Eng Commun 197(10):1261–1272

    Article  Google Scholar 

  22. Ishak A, Nazar R, Pop I (2009) Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. Nonlinear Anal: Real World Appl 10:2909–2913

    Article  MATH  MathSciNet  Google Scholar 

  23. Elbashbeshy EMA, Aldawody DA (2010) Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. Comput Math Appl 60:2806–2811

    Article  MATH  MathSciNet  Google Scholar 

  24. Herwing H, Gersten K (1986) The effect variable properties on laminar boundary layer flow. Wärme- Stoffübertrag 20:47–57

    Article  ADS  Google Scholar 

  25. Lai FC, Kulacki FA (1990) The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int J Heat Mass Transf 33(5):1028–1031

    Article  Google Scholar 

  26. Abel MS, Khan SK, Prasad KV (2002) Study of viscoelastic fluid and heat transfer over a stretching sheet with variable viscosity. Int J Non-Linear Mech 37:81–88

    Article  MATH  Google Scholar 

  27. Gary J, Kassoy DR, Tadjeran H, Zebib A (1982) The effects of significant viscosity variation on convective heat transport in water saturated porous medium. J Fluid Mech 117:233–249

    Article  ADS  MATH  Google Scholar 

  28. Mehta KN, Sood S (1992) Transient free convection flow with temperature dependent viscosity in a fluid saturated porous medium. Int J Eng Sci 30:1083–1087

    Article  MATH  Google Scholar 

  29. Mukhopadhyay S, Layek GC, Samad SkA (2005) Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int J Heat Mass Transf 48:4460–4466

    Article  MATH  Google Scholar 

  30. Ali ME (2006) The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int J Therm Sci 45:60–69

    Article  Google Scholar 

  31. Abd El-Aziz M (2007) Temperature dependent viscosity and thermal conductivity effects on combined heat and mass transfer in MHD three-dimensional flow over a stretching surface with Ohmic heating. Meccanica 42:375–386

    Article  MATH  Google Scholar 

  32. Mukhopadhyay S (2009) Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity. Int J Heat Mass Transf 52:5213–5217

    Article  MATH  Google Scholar 

  33. Yoshimura A, Prudhomme RK (1988) Wall slip corrections for Couette and parallel disc viscometers. J Rheol 32:53–67

    Article  ADS  Google Scholar 

  34. Beavers GS, Joseph DD (1967) Boundary condition at a naturally permeable wall. J Fluid Mech 30:197–207

    Article  ADS  Google Scholar 

  35. Bugliarello G, Hayden JW (1962) High speed microcinematographic studies of blood flow in vitro. Science 138:981–983

    Article  ADS  Google Scholar 

  36. Nubar Y (1971) Blood flow, slip and viscometry. Biophys J 11:252–264

    Article  Google Scholar 

  37. Mukhopadhyay S (2011) Effects of slip on unsteady mixed convective flow and heat transfer past a porous stretching surface. Nucl Eng Des 241:2660–2665

    Article  Google Scholar 

  38. Liao SJ (2006) An analytical solution of unsteady boundary layer flows caused by an impulsively stretched plate. Commun Nonlinear Sci Numer Simul 11:326–339

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Abbasbandy S (2008) Solitary wave solutions to the Kuramoto–Sivashinsky by means of homotopy analysis method. Nonlinear Dyn 52:35–40

    Article  MATH  MathSciNet  Google Scholar 

  40. Sajid M, Abbas Z, Hayat T (2009) Homotopy analysis for boundary layer flow of a micro-polar fluid through a porous channel. Appl Math Model 33:4120–4125

    Article  MATH  MathSciNet  Google Scholar 

  41. Abd El-Aziz M, Nabil T (2012) Homotopy analysis solution of hydromagnetic mixed convection flow past an exponentially stretching sheet with Hall current. Math Prob Eng. doi:10.1155/2012/454023

  42. Ling JX, Dybbs A (December 1987) Forced convection over a flat plate submersed in a porous medium: variable viscosity case. ASME paper 87-WA/HT-23. ASME winter annual meeting, Boston, Massachusetts, pp 13–18

  43. Liao S (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall, Boca Raton

    Google Scholar 

  44. Wang CY (2009) Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal Real World Appl 10(1):375–380

    Article  MATH  MathSciNet  Google Scholar 

  45. Chamkha AJ, Mudhaf-Al AF, Pop I (2006) Effect of heat generation or absorption in thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int Commun Heat Mass Transf 33:1096–1102

    Article  Google Scholar 

Download references

Acknowledgments

The author is very thankful to the reviewers for their encouraging comments and constructive suggestions to improve the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd El-Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Aziz, M.A., Nabil, T. Effect of time-dependent heat source/sink on slip flow and heat transfer from a stretching surface with homotopy analysis method. Meccanica 50, 1467–1480 (2015). https://doi.org/10.1007/s11012-015-0113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0113-4

Keywords

Navigation