Skip to main content
Log in

Experimental investigation of jets from rectangular six-lobed and round orifices at very low Reynolds number

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This article presents an experimental study conducted on a six-lobed rectangular jet at a very low Reynolds number of 800. The near-exit flow dynamics is compared to the reference counterpart circular jet with same initial conditions. Flow dynamics is analyzed using time-resolved flow-visualizations, hot-wire anemometry and laser Doppler velocimetry. In the round jet, flow motion is dominated by large primary Kelvin–Helmholtz (K–H) structures. In the six-lobed rectangular jet, the K–H vortices are very thin compared to the large secondary vortices generated by the high shear at the lobed nozzle lip. The inspection of mean-velocity profiles and streamwise evolutions of the spreading rates in the major and the minor planes of the lobed jet confirm the absence of the switching-over phenomenon not observed on flow images. The streamwise structures that develop in orifice troughs render the volumetric flow rate significantly higher than that of the reference circular jet. Comparison of the obtained results to available data of the literature of similar rectangular six-lobed jets investigated at very high Reynolds numbers reinforces the notion that the three-dimensional flowfields at very low and very high Reynolds numbers are similar if the geometry of the lobed nozzle is conserved. However, important variations in flow dynamics might occur if one or several geometric parameters of the lobed nozzle are modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ho CM, Gutmark E (1987) Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J Fluid Mech 179(1):383–405

    Article  ADS  Google Scholar 

  2. Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320

    Article  ADS  Google Scholar 

  3. Zaman KBMQ (1996) Spreading characteristics and thrust of jets from asymmetric nozzles. AIAA Paper No. 96-0200

  4. Belovich VM, Samimy M (1997) Mixing processes in a coaxial geometry with a central lobed mixer-nozzle. AIAA J 35(5):838–841

    Article  ADS  Google Scholar 

  5. Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Annu Rev Fluid Mech 31:239–272

    Article  ADS  Google Scholar 

  6. Hu H et al (1999) Research on the rectangular lobed exhaust ejector/mixer systems. Trans Jpn Soc Aeronaut Space Sci 41(134):187–194

    Google Scholar 

  7. Hu H et al (2000) Research on the vortical and turbulent structures in the lobed jet flow using laser induced fluorescence and particle image velocimetry techniques. Meas Sci Technol 11:698–711

    Article  ADS  Google Scholar 

  8. Hu H et al (2002) Mixing process in a lobed jet flow. AIAA J 40(7):1339–1345

    Article  ADS  Google Scholar 

  9. Nastase I, Meslem A (2010) Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles. Exp Fluids 48(4):693–714

    Article  Google Scholar 

  10. Abdel-Rahman AA, Al-Fahed SF, Chakroun W (1996) The near field characteristics of circular jets at low Reynolds numbers. Mech Res Commun 23(3):313–324

    Article  Google Scholar 

  11. Malmström TG et al (1997) Centerline velocity decay measurements in low-velocity axisymmetric jets. J Fluid Mech 246:363–377

    Article  ADS  Google Scholar 

  12. Romano GP (2002) The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet. Exp Fluids 33:323–333

    Article  Google Scholar 

  13. Grandchamp X, Van Hirtum A, Pelorson X (2013) Centreline velocity decay characterisation in low-velocity jets downstream from an extended conical diffuser. Meccanica 48:567–583

    Article  Google Scholar 

  14. Todde V, Spazzini PG, Sandberg M (2009) Experimental analysis of low-Reynolds number free jets. Evolution along the jet centerline and Reynolds number effects. Exp Fluids 47:279–294

    Article  Google Scholar 

  15. Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48(3):547–591

    Article  ADS  Google Scholar 

  16. Hussain AKMF, Zaman KBMQ (1980) Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J Fluid Mech 101:493–544

    Article  ADS  Google Scholar 

  17. Hasan MAZ, Hussain AKMF (1982) The self-excited axisymmetric jet. J Fluid Mech 115:59–89

    Article  ADS  Google Scholar 

  18. Liepmann D, Gharib M (1992) The role of streamwise vorticity in the near field entrainement of round jets. J Fluid Mech 245:642–668

    Article  ADS  Google Scholar 

  19. Suprayan R, Fiedler HE (1994) On streamwise vortical structures in the near-field of axisymmetric shear layers. Meccanica 29(4):403–410

    Article  Google Scholar 

  20. Nastase I, Meslem A, Gervais P (2008) Primary and secondary vortical structures contribution in the entrainement of low Reynolds number jet flows. Exp Fluids 44(6):1027–1033

    Article  Google Scholar 

  21. El-Hassan M, Meslem A, Abed-Meraïm K (2011) Experimental investigation of the flow in the near-field of a cross-shaped orifice jet. Phys Fluids 23(045101)

  22. Meslem A, El-Hassan M, Nastase I (2011) Analysis of jet entrainment mechanism in the transitional regime by time-resolved PIV. J Vis 14(1):41–52

    Article  Google Scholar 

  23. El-Hassan M, Meslem A (2010) Vortex structures and entrainment in circular and daisy-shaped orifice jets. In: HEFAT 2010, 7th international conference on heat transfer, fluid mechanics and thermodynamics, 2010, Antalya, Turkey

  24. Zaman KBMQ, Reeder MF, Samimy M (1994) Control of axisymmetric jet using vortex generators. Phys Fluids 6(2):778–793

    Article  ADS  Google Scholar 

  25. Zaman KBMQ (2001) Effect of delta tabs on free jets from complex nozzles. In: NASA/TM—2001-210674, pp 1–63

  26. Chua LP, Yu SCM, Wang XK (2003) Flow visualization and measurements of a square jet with mixing tabs. Exp Thermal Fluid Sci 27:731–744

    Article  Google Scholar 

  27. El-Hassan M, Meslem A (2010) Time-resolved stereoscopic PIV investigation of the entrainement in the near-field of circular and daisy-shaped orifice jets. Phys Fluids 22(035107)

  28. Zaman KBMQ (1996) Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J Fluid Mech 316(1):1–27

    Article  ADS  Google Scholar 

  29. Grinstein FF (2001) Vortex dynamics and entrainment in rectangular free jets. J Fluid Mech 437:69–101

    Article  MATH  ADS  Google Scholar 

  30. Grinstein FF (1995) Self-induced vortex ring dynamics in subsonic rectangular jets. Phys Fluids 7(10):2519–2521

    Article  MathSciNet  ADS  Google Scholar 

  31. Arms R, Hama F (1965) Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys Fluids 8:553–559

    Article  ADS  Google Scholar 

  32. Michalke A (1965) Vortex formation in a free boundary layer according to stability theory. J Fluid Mech 22(2):371–383

    Article  MathSciNet  ADS  Google Scholar 

  33. Wang XK, Chua LP, Yu SCM (2003) On the near-field of a square jet with vortex-generating tabs. Fluid Dyn Res 32:99–117

    Article  MATH  ADS  Google Scholar 

  34. Zaman KBMQ, Wang FY, Georgiadis NJ (2003) Noise, turbulence and thrust of subsonic free jets from lobed nozzles. AIAA J 41(3)

  35. Mi J, Kalt P, Nathan GJ (2010) On turbulent jets issuing from notched-rectangular and circular orifice plates. Flow Turbul Combust 84:565–582

    Article  MATH  Google Scholar 

  36. Liu W, Jiang N (2008) Experimental investigation on mixing enhancement mechanism of turbulent jet flow with tabbed nozzle. Trans Tianjin Univ 14:164–172

    Article  Google Scholar 

  37. Zaman KBMQ (1999) Spreading characteristics of compressible jets from nozzles of various geometries. J Fluid Mech 383:197–228

    Article  MATH  ADS  Google Scholar 

  38. Georgiadis NJ et al (2003) Effects of RANS turbulence modeling on calculation of lobed nozzle flow fields. In: 41st aerospace sciences meeting and exhibit, 2003, Reno, Nevada

  39. Adrian RJ (1983) Laser velocimetry. In: Goldstein RJ (ed) Fluid mechanics measurements. Springer, Berlin, pp 155–240

    Google Scholar 

  40. Kähler C, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33(6):736–742

    Article  Google Scholar 

  41. Garcia CM, Jackson PR, Garcia MH (2006) Confidence intervals in the determination of turbulence parameters. Exp Fluids 40(4):514–522

    Article  Google Scholar 

  42. Petrie HL, Samimy M, Addy AL (1988) Laser Doppler velocity bias in separated flows. Exp Fluids 6(1):80–88

    Google Scholar 

  43. Barnett DO, Bentley HT (1974) Statistical bias of individual realization laser velocimeters. In: Proceedings of the second international workshop on laser velocimetry

  44. Bendat JS, Piersol AG (1986) Random data. Analysis and measurement procedures, 2nd edn. Wiley-Interscience Publication, New York

    MATH  Google Scholar 

  45. Haertig J (2003) Traitement de données en Vélocimétrie Laser Doppler. AFVL Ecole d’automne: Vélocimétrie et granulométrie laser. St-Pierre d’Oléron

  46. Stannov TH (1995) An accurate, easy to use low-turbulence calibrator for hot-wire anemometer. Dantec Inf 14:6–11

    Google Scholar 

  47. Kanevce G, Oka S (1973) Correcting hot-wire readings for the influence of fluid temperature variation. DISA Inf 15:21–25

    Google Scholar 

  48. Jorgensen FE (2002) How to measure turbulence with hot-wire anemometers—a practical guide. Dantec Dynamics, DK-2740, Skovlunde

  49. Nastase I, Meslem A, Bowmans T (2008) Vortical structures analysis in jet flows using a classical 2D-PIV system and time resolved visualization image processing. J Flow Vis Image Process 15(4):275–300

    Article  Google Scholar 

  50. Hussain AKMF, Clark AR (1977) Upstream influence on the near field of plane turbulent jet. Phys Fluids 20(9):1416–1426

    Article  ADS  Google Scholar 

  51. Quinn WR (2006) Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur J Mech B 25:279–301

    Article  MATH  Google Scholar 

  52. Gutmark EJ, Ho CM (1983) Preferred modes and the spreading rates of jets. Phys Fluids 26(10):2932–2938

    Article  ADS  Google Scholar 

  53. Davies PAOL, Fischer M, Barrat MJ (1963) The characteristics of the turbulence in the mixing region of a round jet. J Fluid Mech 15:337–367

    Article  MATH  ADS  Google Scholar 

  54. Petersen RA (1978) Influence of wave dispersion on vortex pairing in a jet. J Fluid Mech 89(3):469–495

    Article  ADS  Google Scholar 

  55. Bradshaw P, Ferriss DH, Johnson RF (1964) Turbulence in the noise-producing region of a circular jet. J Fluid Mech 19:591–624

    Article  MATH  ADS  Google Scholar 

  56. Meslem A, Nastase I, Allard F (2010) Passive mixing control for innovative air diffusion terminal devices for buildings. Build Environ 45:2679–2688

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants of the French National Agency for Research, Project ANR-12-VBDU-0010-FLUBAT and of the Romanian National Authority for Scientific Research, CNCS, UEFISCDI, Project number: PN-II-PT-PCCA-2011-3.2-0512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Meslem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meslem, A., Greffet, R., Nastase, I. et al. Experimental investigation of jets from rectangular six-lobed and round orifices at very low Reynolds number. Meccanica 49, 2419–2437 (2014). https://doi.org/10.1007/s11012-014-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0019-6

Keywords

Navigation