Skip to main content
Log in

Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  2. Stolken JS, Evans AG (1998) A microbend test method for measuring the plasticity length-scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  3. Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14:4103–4110

    Article  ADS  Google Scholar 

  4. Senturia SD (2001) Microsystem design. Kluwer, Boston

    Google Scholar 

  5. Haque MA, Saif MTA (2003) Strain gradient effect in nanoscale thin films. Acta Mater 51:3053–3061

    Article  Google Scholar 

  6. Shrotriya P, Allameh SM, Lou J, Buchheit T, Soboyejo WO (2003) On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mech Mater 35:233–243

    Article  Google Scholar 

  7. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  8. Lou J, Shrotriya P, Allameh S, Buchheit T, Soboyejo WO (2006) Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films. Mater Sci Eng A 441:299–307

    Article  Google Scholar 

  9. Cosserat E, Cosserat F (1909) Theory of deformable bodies. (trans: Delphenich DH). Scientific library. Herman, Paris

    Google Scholar 

  10. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple microelastic solid—I. Int J Eng Sci 2:189–203

    Article  MathSciNet  MATH  Google Scholar 

  12. Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  13. Koiter WT (1964) Couple stresses in the theory of elasticity I and II. Proc K Ned Akad Wet, Ser B Phys Sci 67:17–44

    MATH  Google Scholar 

  14. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  15. Toupin RA (1964) Theory of elasticity with couple stresses. Arch Ration Mech Anal 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  17. Asghari M, Kahrobaiyan MH, Rahaeifard M, Ahmadian MT (2011) Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch Appl Mech 81:863–874

    Article  Google Scholar 

  18. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761

    Article  MathSciNet  MATH  Google Scholar 

  19. Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280

    Article  Google Scholar 

  20. Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82:423–443

    Article  Google Scholar 

  21. Lazopoulos KA (2004) On the gradient strain elasticity theory of plates. Eur J Mech A, Solids 23:843–852

    Article  MathSciNet  MATH  Google Scholar 

  22. Lazopoulos KA (2009) On bending of strain gradient elastic micro-plates. Mech Res Commun 36:777–783

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46:2757–2764

    Article  MATH  Google Scholar 

  24. Jomehzadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43:877–883

    Article  ADS  Google Scholar 

  25. Yin L, Qian Q, Wang L, Xia W (2010) Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech Solida Sin 23:386–393

    Google Scholar 

  26. Asghari M (2012) Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int J Eng Sci 51:292–309

    Article  MathSciNet  Google Scholar 

  27. Asghari M, Kahrobaiyan MH, Nikfar M, Ahmadian MT (2012) A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech 223:1233–1249

    Article  MathSciNet  Google Scholar 

  28. Reddy JN, Kim J (2012) A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos Struct 94:1128–1143

    Article  Google Scholar 

  29. Kahrobaiyan MH, Asghari M, Rahaeifard M, Ahmadian MT (2011) Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int J Eng Sci 48:1985–1994

    Article  MathSciNet  Google Scholar 

  30. Kahrobaiyan MH, Tajalli SA, Movahhedy MR, Akbari J, Ahmadian MT (2011) Torsion of strain gradient bars. Int J Eng Sci 49:856–866

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47:1649–1658

    Article  MathSciNet  Google Scholar 

  32. Alizada AN, Sofiyev AH (2011) Modified Young’s moduli of nano-materials taking into account the scale effects and vacancies. Meccanica 46:915–920

    Article  MathSciNet  Google Scholar 

  33. Wang B, Zhou S, Zhao J, Chen X (2011) A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur J Mech A, Solids 30:517–524

    Article  MATH  Google Scholar 

  34. Ma HM, Gao X-L, Reddy JN (2011) A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220:217–235

    Article  MATH  Google Scholar 

  35. Ke LL, Wang YS, Yang J, Kitipornchai S (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331:94–106

    Article  ADS  Google Scholar 

  36. Reddy JN (2007) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  37. Jemielita G (1990) On kinematical assumptions of refined theories of plates: a survey. ASME J Appl Mech 57:1088–1091

    Article  Google Scholar 

  38. Jemielita G (1994) Governing equations and boundary conditions of a generalized model of elastic foundation. J Theor Appl Mech 32:887–901

    Google Scholar 

  39. Jemielita G (2001) Micropolar plates subject to a normal polyharmonic loading. J Theor Appl Mech 39:959–968

    MATH  Google Scholar 

  40. Jemielita G (1995) Rotational representation of a plate made of Grioli-Toupin material. ASME J Appl Mech 62:414–418

    Article  MATH  Google Scholar 

  41. Jemielita G (1992) Biharmonic representation of the solution to equilibrium problem of a plate made of a Cosserat material. J Theor Appl Mech 30:359–367

    Google Scholar 

  42. Ferreira AJM, Luís CMS, Bertoluzza S (2011) Analysis of plates on Winkler foundation by wavelet collocation. Meccanica 46:865–873

    Article  Google Scholar 

  43. Roque CMC, Rodrigues JD, Ferreira AJM (2012) Analysis of thick plates by local radial basis functions-finite differences method. Meccanica 47:1157–1171

    Article  MathSciNet  Google Scholar 

  44. Yas MH, Jodaei A, Irandoust S (2012) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47:1401–1423

    Article  MathSciNet  Google Scholar 

  45. Kumar Y, Lal R (2012) Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation. Meccanica 47:893–915

    Article  MathSciNet  Google Scholar 

  46. Malekzadeh P, Haghighi MR, Golbahar B, Alibeygi A (2012) Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations. Meccanica 47:321–333

    Article  MathSciNet  Google Scholar 

  47. Akgoz B (2012) Higher-order continuum theories of beams and plates surrounding by an elastic matrix. Ph.D. Thesis Seminar, Graduate School of Natural and Applied Science, Akdeniz University, Antalya

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Civalek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgöz, B., Civalek, Ö. Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013). https://doi.org/10.1007/s11012-012-9639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9639-x

Keywords

Navigation