Skip to main content
Log in

Efficient dynamic modelling and characterization of a magnetorheological damper

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present work is about the dynamic modelling and the experimental testing of magnetorheological (MR) dampers, especially at low frequency. The main improvement of this work over former models is the identification of dynamic parameters which are independent of the working conditions and vary only as a function of the current. A simple model is built on the basis of the literature and of a systematic experimental campaign, with the aim of simplifying the effort in retrieving the parameters and in controlling the system. The excitation current is introduced in the model as a variable, not only reducing the amount of test needed to assess the parameters, but also obtaining a faster model useful in motion control. A second order polynomial relationship between the applied current and the three variable parameters is found, showing a saturation effect at high currents. A verification test shows the reliability and the performance of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

parameter related to hysteresis curve amplitude

c 0 :

parameter related to the damping at low speed

c 1 :

parameter related to the damping at high speed

d :

displacement of the damper rod

F :

damper force

I :

applied current

k 0 :

parameter related to the elasticity of the Bouc-Wen sub-model

k 1 :

parameter related to the elastic force of the accumulator

n :

parameter related to the evolution of the hysteresis force

v :

speed of the damper rod

x :

displacement of the damper

x 0 :

preload of the system

y :

relative displacement of the Bouc-Wen sub-model

z :

evolutionary variable of the Bouc-Wen block

α :

parameter related to the hysteresis force

β :

parameter related to the smoothness of the hysteresis curve

γ :

parameter related to the hysteresis shape

References

  1. Gavin HP, Hanson RD, Filisko FE (1996) Electrorheological dampers, part I: analysis and design. J Appl Mech 63:669–675

    Article  Google Scholar 

  2. Kamath GM, Hurt MK, Wereley NM (1996) Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. Smart Mater Struct 5:576–590

    Article  ADS  Google Scholar 

  3. Wereley NM, Pang L (1998) Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Mater Struct 7:732

    Article  ADS  Google Scholar 

  4. Wang X, Gordaninejad F (2007) Flow analysis and modelling of field-controllable, electro- and magneto-rheological fluid dampers. J Appl Mech 74:13–22

    Article  MATH  Google Scholar 

  5. Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425

    Article  ADS  Google Scholar 

  6. Liu Y, Gordaninejad F, Evrensel CA, Wang X, Hitchcock GH (2000) Semiactive control of a two-span bridge using field-controllable magneto-rheological dampers. In: Proc of SPIE conference on smart materials and structures, vol 3988, pp 199–206

    Google Scholar 

  7. Wereley NM, Lindler J, Rosenfeld N, Choi YT (2004) biviscous damping behavior in electrorheological shock absorbers. Smart Mater Struct 13:743–752

    Article  ADS  Google Scholar 

  8. Spencer BF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech 123:230–238

    Google Scholar 

  9. Yang G, Spencer BF, Carlson JD, Sain MK (2002) Large-scale MR fluid dampers: modelling and dynamic performance considerations. Eng Struct 24:309–323

    Article  Google Scholar 

  10. Dominguez A, Sedaghati R, Stiharu I (2006) A new dynamic hysteresis model for magnetorheological dampers. Smart Mater Struct 15:1179–1189

    Article  ADS  Google Scholar 

  11. Marannano GV, Virzì Mariotti G, Duboka Č (2011) Preliminary design of a magnetorheological brake for automotive use. In: Science and motor vehicles, international automotive conference, 19–21 April, Belgrad, Serbia

    Google Scholar 

  12. Barbaraci G, Virzì Mariotti G (2009) The recovery of the optimal damping constant by the MRF damper. Mobil Veh Mech 35(4):1–17

    Google Scholar 

  13. Forte P, Paternò M, Rustighi E (2004) A magnetorheological fluid damper for rotor applications. Int J Rotating Mach 10(3):175–182

    Google Scholar 

  14. Carmignani C, Forte P, Rustighi E (2006) Design of a novel magnetorheological squeeze film damper. Smart Mater Struct 15(1):164–170

    Article  ADS  Google Scholar 

  15. Bucchi F, Forte P, Frendo F, Bartalesi E, Squarcini R (2011) Progetto E sperimentazione di una frizione a fluidi magnetoreologici. In: Proc. of the XL AIAS congress. http://www.aias2011.it/memoriex/075.pdf

    Google Scholar 

  16. Choi SB, Lee SK, Park YP (2001) A hysteresis model for the field-dependent damping force of a magnetorheological damper. J Sound Vib 245:375–383

    Article  ADS  Google Scholar 

  17. Minotti M, Pucci R, Salvini P (2011) Caratterizzazione di fluidi magnetoreologici mediante giogo magnetico. In: Proc. of the XL AIAS congress. http://www.aias2011.it/memoriex/009.pdf

    Google Scholar 

  18. Wang ER, Ma XQ, Rakheja S, Su CY (2005) Modelling the hysteretic characteristics of a magnetorheological fluid damper. Proc Inst Mech Eng, Part D, J Automob Eng Mech 217:537–550

    Article  Google Scholar 

  19. Ma XQ, Rakheja S, Su CY (2007) Development and relative assessments of models for characterizing the current dependent hysteresis properties of magnetorheological fluid dampers. J Intell Mater Syst Struct 18:487–502

    Google Scholar 

  20. LORD MR Damper™ RD-1005-3: Technical DataSheet. http://www.lordfulfillment.com/upload/DS7017.pdf

  21. Çeşmeci Ş, Engin T (2010) Modeling and testing of a field-controllable magnetorheological fluid damper. Int J Mech Sci 52:1036–1046

    Article  Google Scholar 

  22. Poynor JC (2001) Innovative designs for magneto-rheological dampers. MS Thesis, Virginia Polytechnic Institute and State University, USA

  23. Matlab, Mathworks® references. htpp://www.math.ufl.edu/help/matlab/ReferenceTOC.html%20

  24. Technical report of the centers for disease control and prevention. The National Institute for Occupational Safety and Health (NIOSH). http://www.cdc.gov/niosh/mining/pubs/pdfs/lioss.pdf

  25. Yu Y, Naganathan NG, Dukkipati RV (2001) A literature review of automotive vehicle engine mounting systems. Mech Mach Theory 36:123–142

    Article  MATH  Google Scholar 

  26. Italian National Institute for agricultural mechanization (ENAMA). http://www.bice.rm.cnr.it/TESTIVIBRAZIONI/8.enama_int_produzione.pdf

  27. Heißing B, Ersoy M (eds) (2011) Chassis handbook—fundamentals, driving dynamics, components, mechatronics, perspectives. Vieweg/Teubner, Wiesbaden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Spaggiari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaggiari, A., Dragoni, E. Efficient dynamic modelling and characterization of a magnetorheological damper. Meccanica 47, 2041–2054 (2012). https://doi.org/10.1007/s11012-012-9573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9573-y

Keywords

Navigation