Skip to main content

Advertisement

Log in

Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have shown promising outcomes in cardiac and neuronal diseases. Efficient and noninvasive tracking of MSCs is essential to harness their therapeutic potential. Iron oxide nanoparticles (IONPs) have emerged as effective means to label stem cells and visualize them using magnetic resonance imaging (MRI). It is known that IONPs do not affect viability and cell proliferation of stem cells. However, very few studies have demonstrated differentiation potential of iron oxide-labeled MSCs and their differentiation into specific lineages that can contribute to cellular therapies. The differentiation of IONP-labeled human bone marrow mesenchymal stem cells (hBM-MSCs) into cardiac and neuronal lineages has never been studied. In this study, we have shown that IONP-labeled hBM-MSCs retain their differentiation potential to cardiac and neuronal cell lineages. We also confirmed that labeling hBM-MSCs with IONP does not affect their characteristic properties such as viability, cellular proliferation rate, surface marker profiling, and trilineage differentiation capacity. This study shows that IONP can be efficiently tracked, and its labeling does not alter stemness and differentiation potential of hBM-MSCs. Thus, the labeled hBM-MSCs can be used in clinical therapies and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalinina NI, Sysoeva VY, Rubina KA, Parfenova YV, Tkachuk VA (2011) Acta Naturae 3:30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel DM, Shah J, Srivastava AS (2013) Stem Cells Int 2013:496218

    Article  Google Scholar 

  3. Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG (2008) Neurosurg Focus 24:E19

    Article  Google Scholar 

  4. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Circulation 108:863–868

    Article  Google Scholar 

  5. Suzuki S, Kawamata J, Iwahara N, Matsumura A, Hisahara S, Matsushita T, Sasaki M, Honmou O, Shimohama S (2015) Neurosci Lett 584:276–281

    Article  CAS  Google Scholar 

  6. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  7. Saldanha KJ, Piper SL, Ainslie KM, Kim HT, Majumdar S (2008) Eur Cells Mater 16:17–25

    Article  CAS  Google Scholar 

  8. Song M, Moon WK, Kim Y, Lim D, Song IC, Yoon BW (2007) Korean J Radiol 8:365–371

    Article  Google Scholar 

  9. Hsiao JK, Yang CY, Wang YH, Lu CW, Uttam BP, Liu HM (2008) Biomed Eng 20:259–265

    Google Scholar 

  10. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA (2005) Blood 105:420–425

    Article  CAS  Google Scholar 

  11. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JWM (2003) Radiology 228:480–487

    Article  Google Scholar 

  12. Lei H, Nan X, Wang Z, Gao L, Xie L, Zou C, Wan Q, Pan D, Beauchamp N, Yang X, Matula T, Qiu B (2015) J Nanosci Nanotechnol 15:2605–2612

    Article  CAS  Google Scholar 

  13. Lindemann A, Ludtke-Buzug K, Fraderich BM, Grafe K, Pries R, Wollenberg B (2014) Int J Nanomed 9:5025–5040

    Article  Google Scholar 

  14. Jasmin, Torres AL, Nunes HM, Passipieri JA, Jelicks LA, Gasparetto EL, Spray DC, Campos de Carvalho, AC, Mendez-Otero R (2011) J Nanobiotechnol 9:4

    Article  CAS  Google Scholar 

  15. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA (2006) NMR Biomed 19:581–592

    Article  CAS  Google Scholar 

  16. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Halsih H, Frank JA (2003) Radiology 229:838–846

    Article  Google Scholar 

  17. Liu ZY, Wang Y, Liang CH, Li XH, Wang GY, Liu HJ, Li Y (2009) Radiology 253:153–159

    Article  Google Scholar 

  18. Frank JA, Anderson SA, Kalsih H, Jordan EK, Lewis BK, Yocum GT, Arbab AS (2004) Cytotherapy 6:621–625

    Article  CAS  Google Scholar 

  19. Himes N, Min JY, Lee R, Brown C, Shea J, Huang X, Xiao YF, Morgan JP, Burstein D, Oettgen P (2004) Magn Reson Med 52:1214–1219

    Article  Google Scholar 

  20. Markides H, Kehoe O, Morris RH, Haj AJE (2013) Stem Cell Res Ther 4:126

    Article  Google Scholar 

  21. Balakumaran A, Pawelczyk E, Ren J, Sworder B, Chaudhry A, Sabatino M, Stroncek D, Frank JA, Robey PG (2010) PLoS ONE 5:e11462

    Article  Google Scholar 

  22. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM (2014) Int J Nanomed 9:1641–1653

    CAS  Google Scholar 

  23. Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, Cardoso VN, Goes AM, Ferreira AJ (2010) Cell Transplant 19:219–230

    Article  Google Scholar 

  24. Rice HE, Hsu EW, Sheng H, Evenson DA, Freemerman AJ, Safford KM, Provenzale JM, Warner DS, Johnson GA (2007) AJR 188:1101–1108

    Article  Google Scholar 

  25. Duan ZX, Zheng QX, Guo XD, Bai Y, Yuan Q, Chen SG (2008) Zhongguo Gu Shang 21:282–284

    CAS  PubMed  Google Scholar 

  26. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  27. Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  28. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Part Fibre Toxicol 4:2

    Article  Google Scholar 

  29. Jeng HA, Swanson J (2006) J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711

    Article  CAS  Google Scholar 

  30. Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T (2004) Free Radic Biol Med 36:976–984

    Article  CAS  Google Scholar 

  31. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  32. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Circulation 108:1009–1014

    Article  Google Scholar 

  33. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Transplantation 76:1123–1130

    Article  CAS  Google Scholar 

  34. Arbab AS, Yocum GT, Wilson LB, Parwana A, Jordan EK, Kalish H, Frank JA (2004) Mol Imaging 3:24–32

    Article  CAS  Google Scholar 

  35. Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Ocherashvilli A, Holbova R, Yosef O, Barbash IM, Leor J (2007) Circulation 116:I-38–I-45

    Article  CAS  Google Scholar 

  36. Lee ES, Chan J, Shuter B, Tan LG, Chong MS, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang SC (2009) Stem Cells 27:1921–1931

    Article  CAS  Google Scholar 

  37. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Stroke 39:1569–1574

    Article  CAS  Google Scholar 

  38. Hu SL, Zhang JQ, Hu X, Hu R, Luo HS, Li F, Xia YZ, Li JT, Lin JK, Zhu G, Feng H (2009) J Cell Biochem 108:529–535

    Article  CAS  Google Scholar 

  39. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Radiology 228:480–487

    Article  Google Scholar 

  40. Hoehn M, Küstermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK et al (2002) Proc Natl Acad Sci USA 99:16267–16272

    Article  CAS  Google Scholar 

  41. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW (2004) NMR Biomed 17:513–517

    Article  Google Scholar 

  42. Blaber SP, Hill CJ, Webster RA, Say JM, Brown LJ, Wang SC, Vesey G, Herbert BR (2013) PLoS ONE 8:e52997

    Article  CAS  Google Scholar 

  43. Sibov TT, Pavon LF, Miyaki LA, Mamani JB, Nucci LP, Alvarim LT, Silveira PH, Marti LC, Gamarra L (2014) Int J Nanomed 9:337–350

    Google Scholar 

  44. Zhang R, Li J, Li J, Xie J (2014) Mol Cells 37:650–655

    Article  Google Scholar 

  45. Landazuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, Giddens DP, Bao G, Taylor WR (2013) Small 9:4017–4026

    Article  CAS  Google Scholar 

  46. Kakkar A, Mohanty S, Bhargava B, Airan B (2015) J Pract Cardiovasc Sci 1(2):150–155

    Article  Google Scholar 

  47. Singh M, Kakkar A, Sharma R, Kharbanda OP, Monga N, Kumar M, Chowdhary S, Airan B, Mohanty S (2017) Sci Rep. https://doi.org/10.1038/s41598-017-11028-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Skelton RJ, Khoja S, Almeida S, Rapacchi S, Han F, Engel J, Zhao P, Hu P, Stanley EG, Elefanty AG, Kwon M, Elliott DA, Ardehali R (2016) Stem Cells Transl Med 5:67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Mohanty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 180859 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Jain, K.G., Nandy, S.B. et al. Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells. Mol Cell Biochem 448, 17–26 (2018). https://doi.org/10.1007/s11010-018-3309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3309-9

Keywords

Navigation