Skip to main content
Log in

FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the role of fibroblast growth factor 21 (FGF21) in nonalcoholic fatty liver disease (NAFLD) and seek to determine if its therapeutic effect is through induction of autophagy. In this research, Monosodium L-glutamate (MSG)-induced obese mice or normal lean mice were treated with vehicle, Fenofibrate, and recombinant murine FGF21, respectively. After 5 weeks of treatment, metabolic parameters including body weight, blood glucose and lipid levels, hepatic and fat gene expression levels were monitored and analyzed. Also, fat-loaded HepG2 cells were treated with vehicle or recombinant murine FGF21. The expression levels of proteins associated with autophagy were detected by western blot, real-time PCR, and transmission electron microscopy (TEM). Autophagic flux was monitored by laser confocal microscopy and western blot. Results showed that FGF21 significantly reduced body weight (P < 0.01) and serum triglyceride, improved insulin sensitivity, and reversed hepatic steatosis in the MSG model mice. In addition, FGF21 significantly increased the expression of several proteins related to autophagy both in MSG mice and fat-loaded HepG2 cells, such as microtubule associated protein 1 light chain 3, Bcl-2-interacting myosin-like coiled-coil protein-1 (Beclin-1), and autophagy-related gene 5. Furthermore, the evidence of TEM revealed an increased number of autophagosomes and lysosomes in the model cells treated with FGF21. In vitro experimental results also showed that FGF21 remarkably increased autophagic flux. Taken together, FGF21 corrects multiple metabolic parameters on NAFLD in vitro and in vivo by inducing autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42(1):44–52

    Article  PubMed  Google Scholar 

  2. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332(6037):1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stickel F, Hellerbrand C (2010) Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut 59(10):1303–1307

    Article  CAS  PubMed  Google Scholar 

  4. Serfaty L, Lemoine M (2008) Definition and natural history of metabolic steatosis: clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab 34(6 Pt 2):634–637

    Article  CAS  PubMed  Google Scholar 

  5. García-Villafranca J, Guillén A, Castro J (2008) Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie 90(3):460–466

    Article  PubMed  Google Scholar 

  6. Angelico F, Del Ben M, Conti R, Francioso S, Feole K, Fiorello S, Cavallo MG, Zalunardo B, Lirussi F, Alessandri C, Violi F (2005) Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab 90(3):1578–1582

    Article  CAS  PubMed  Google Scholar 

  7. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923

    Article  PubMed  Google Scholar 

  8. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B, Rudling M (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPAR-α activation in man. Cell Metab 8(2):169–174

    Article  PubMed  Google Scholar 

  10. Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148(2):774–781

    Article  CAS  PubMed  Google Scholar 

  11. Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, Takano Y, Iizuka S, Nagata M, Suzuki W, Shimada T, Aburada M, Nakano M, Selmi C, Gershwin ME (2008) Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 30(1–2):42–50

    Article  CAS  PubMed  Google Scholar 

  12. Cahová M, Daňková H, Páleníčková E, Papáčková Z, Kazdová L (2010) The autophagy-lysosomal pathway is involved in TAG degradation in the liver: the effect of high-sucrose and high-fat diet. Folia Biol (Praha) 56(4):173–182

    Google Scholar 

  13. Ding WX, Li M, Yin XM (2011) Selective taste of ethanol-induced autophagy for mitochondria and lipid droplets. Autophagy 7(2):248–249

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11(6):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amir M, Czaja MJ (2011) Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 5(2):159–166

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang P, Huang Z, Zhao H, Wei T (2013) Hydrogen peroxide impairs autophagic flux in a cellmodel of nonalcoholic fatty liver disease. Biochem Biophys Res Commun 433(4):408–414

    Article  CAS  PubMed  Google Scholar 

  18. Ye X, Zhao J, Ren G, Yu D, Liu M, Yu Y, Li D (2013) The hypoglycemic effect of the PEGylated FGF-21. Prog Biochem Biophys 40(4):374–385

    CAS  Google Scholar 

  19. Sun SJ, Shen ZF, Chen YT, Tang L, Ding SY, Xie MZ (2003) Effects of conjugated linoleic acid on obese MSG mice with insulin resistance. Yao Xue Xue Bao 38(12):904–907

    CAS  PubMed  Google Scholar 

  20. Liu SN, Liu Q, Shen ZF (2008) A preliminary study on the mechanism of impaired beta cell function in monosodium glutamate obese rat with insulin resistance. Yao Xue Xue Bao 43(11):1106–1111

    CAS  PubMed  Google Scholar 

  21. Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97(6):493–497

    Article  PubMed  Google Scholar 

  22. Shen Z, Liang X, Rogers CQ, Rideout D, You M (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298(3):G364–G374

    Article  CAS  PubMed  Google Scholar 

  23. Cusi K (2009) Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin Liver Dis 13(4):545–563

    Article  PubMed  Google Scholar 

  24. Angelico F1, Del Ben M, Conti R, Francioso S, Feole K, Fiorello S, Cavallo MG, Zalunardo B, Lirussi F, Alessandri C, Violi F (2005) Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab 90(3):1578–1582

    Article  CAS  PubMed  Google Scholar 

  25. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923

    Article  PubMed  Google Scholar 

  26. Ye X, Qi J, Wu Y, Yu D, Xu P, Li S, Zhu S, Wu Q, Ren G, Li D (2015) Comparison of PEGylated FGF-21 with insulin glargine for long-lasting hypoglycaemic effect in db/db mice. Diabetes Metab. 41(1):82–90

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Véniant MMX, X J, JL D, H C, Hale C (2008) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1):250–259

    Article  PubMed  Google Scholar 

  28. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12):6018–6027

    Article  CAS  PubMed  Google Scholar 

  29. Ye X, Qi J, Ren G, Xu P, Wu Y, Zhu S, Yu D, Li S, Wu Q, Muhi RL, Li D (2015) Long-lasting anti-diabetic efficacy of PEGylated FGF-21 and liraglutide in treatment of type 2 diabetic mice. Endocrine 49(3):683–692

    Article  CAS  PubMed  Google Scholar 

  30. Feng X, Jiang Y, Meltzer P, Yen PM (2000) Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol 14(7):947–955

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, Busby J, Hecht R, Li YS, Li Y, Lindberg R, Véniant MM (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 297(5):E1105–E1114

    Article  CAS  PubMed  Google Scholar 

  32. Huett A, Goel G, Xavier RJ (2010) A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 26(4):302–309

    Article  PubMed  Google Scholar 

  33. Czaja MJ (2010) Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. Am J Physiol Cell Physiol 298(5):973–978

    Article  Google Scholar 

  34. Kaushik S, Singh R, Cuervo AM (2010) Autophagic pathways and metabolic stress. Diabetes Obes Metab 12(Suppl 2):4–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R (2010) Autophagy in liver diseases. J Hepatol 53(6):1123–1134

    Article  CAS  PubMed  Google Scholar 

  36. Tacke F, Trautwein C (2011) Controlling autophagy: a new concept for clearing liver disease. Hepatology 53(1):356–358

    Article  PubMed  Google Scholar 

  37. Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim do H, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83–92

    Article  CAS  PubMed  Google Scholar 

  38. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86(1):103–112

    Article  CAS  PubMed  Google Scholar 

  39. Kimura S, Fujita N, Noda T, Yoshimori T (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452:1–12

    Article  CAS  PubMed  Google Scholar 

  40. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ (2009) In search of an “autophagomometer”. Autophagy 5(5):585–589

    Article  CAS  PubMed  Google Scholar 

  41. Oosterveer MH, Grefhorst A, van Dijk TH, Havinga R, Staels B, Kuipers F, Groen AK, Reijngoud DJ (2009) Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice. J Biol Chem 284(49):34036–34044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ph.D. Lubna M. Rasool for helpful revising. This work was supported by Heilongjiang Development and Reform Commission ([2011]1570), National Natural Science Foundation of China (J1210069/J0106), the key scientific research programs of Henan education department (No. 16A180007) and PhD scientific research initiation foundation of Henan normal university (No. 5101049170162 and No. 5201319170001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiping Ren or Deshan Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Shenglong Zhu, Yunzhou Wu and Xianlong Ye contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wu, Y., Ye, X. et al. FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy. Mol Cell Biochem 420, 107–119 (2016). https://doi.org/10.1007/s11010-016-2774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2774-2

Keywords

Navigation