Skip to main content
Log in

Angiotensin II down-regulates natriuretic peptide receptor-A expression and guanylyl cyclase activity in H9c2 (2-1) cardiac myoblast cells: Role of ROS and NF-κB

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atrial natriuretic peptide (ANP)/natriuretic peptide receptor-A (NPR-A) system is suggested as an endogenous anti-hypertrophic protective mechanism of the heart. We have shown previously that Angiotensin II (ANG II), an effector molecule of renin–angiotensin–aldosterone system, down-regulates NPR-A expression and its activity in vivo rat heart. However, the underlying mechanism by which ANG II down-regulates NPR-A expression in the heart is not well understood. Hence, the present investigation was aimed to determine whether ANG II-stimulated reactive oxygen species (ROS) and NF-κB are involved in the down-regulation of NPR-A activity in H9c2 (2-1) cardiac myoblast cells. The H9c2 (2-1) cardiac myoblast cells were exposed to ANG II (10−7 M for 20 h) with/or without blocker treatment (losartan-10 µM, N-acetyl cysteine (NAC)-10 mM and pyrrolidine dithiocarbamate (PDTC)-100 µM). On exposure, ANG II induced a significant decrease (P < 0.001) in the expression of Npr1 (coding for NPR-A) gene and NPR-A receptor-dependent guanylyl cyclase (GC) activity. The level of expression of proto-oncogenes (c-fos, c-myc, and c-jun) and natriuretic peptides (ANP and BNP) was increased in ANG II-treated cells when compared with control cells. Interestingly, ANG II-dependent repression of Npr1 gene expression and guanylyl cyclase (GC) activity was completely restored on treatment with losartan, while only a partial reversal was observed in NAC- and PDTC-co-treated cells. In conclusion, the results of this study suggest that ROS-mediated NF-κB activation mechanism is critically involved in the ANG II-mediated down-regulation of NPR-A expression and its GC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Bold AJ (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770

    Article  PubMed  Google Scholar 

  2. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328

    Article  CAS  PubMed  Google Scholar 

  3. Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15:135–162

    Article  CAS  PubMed  Google Scholar 

  4. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98:2703–2706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zahabi A, Picard S, Fortin N, Reudelhuber TL, Deschepper CF (2003) Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoproterenol and aortic constriction on mouse hearts. J Biol Chem 278:47694–47699

    Article  CAS  PubMed  Google Scholar 

  8. Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ellmers LJ, Scott NJ, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA (2007) Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol 38(1–2):245–257

    Article  CAS  PubMed  Google Scholar 

  10. Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K (2009) Natriuretic peptide signaling via guanylyl cyclase (GC)-A: an endogenous protective mechanism of the heart. Curr Cardiol Rev 5:45–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yoshimura M, Yasue H, Okumura K, Ogawa H, Jougasaki M, Mukoyama M, Nakao K, Imura H (1993) Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87:464–469

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh N, Haddad H (2011) Atrial natriuretic peptides in heart failure: pathophysiological significance, diagnostic and prognostic value. Can J Physiol Pharmacol 89:587–591

    Article  CAS  PubMed  Google Scholar 

  13. Lu Y, Yang S (2009) Angiotensin II induces cardiomyocyte hypertrophy probably through histone deacetylases. Tohoku J Exp Med 219:17–23

    Article  CAS  PubMed  Google Scholar 

  14. Zhou D, Liang Q, He X, Zhan C (2008) Changes of c-fos and c-jun mRNA expression in angiotensin II-induced cardiomyocyte hypertrophy and effects of sodium tanshinone IIA sulfonate. J Huazhong Univ Sci Technol Med Sci 28:531–534

    Article  CAS  PubMed  Google Scholar 

  15. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  16. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  CAS  PubMed  Google Scholar 

  17. Papparella I, Ceolotto G, Montemurro D, Antonello M, Garbisa S, Rossi G, Semplicini A (2008) Green tea attenuates angiotensin II-induced cardiac hypertrophy in rats by modulating reactive oxygen species production and the Src/epidermal growth factor receptor/Akt signaling pathway. J Nutr 138:1596–1601

    CAS  PubMed  Google Scholar 

  18. Dhiman M, Garg NJ (2011) NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 225:583–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wattanapitayakul SK, Bauer JA (2001) Oxidative pathways in cardiovascular disease: roles, mechanisms, and therapeutic implications. Pharmacol Ther 89:187–206

    Article  CAS  PubMed  Google Scholar 

  20. Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW (2005) Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation 111:2319–2325

    Article  CAS  PubMed  Google Scholar 

  21. Gupta S, Purcell NH, Lin A, Sen S (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 159:1019–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zou XJ, Yang L, Yao SL (2008) Propofol depresses angiotensin II-induced cardiomyocyte hypertrophy in vitro. Exp Biol Med (Maywood) 233:200–208

    Article  CAS  Google Scholar 

  23. Ryan KA, Smith MF Jr, Sanders MK, Ernst PB (2004) Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun 72:2123–2130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang L, Pang S, Deng B, Qian L, Chen J, Zou J, Zheng J, Yang L, Zhang C, Chen X, Liu Z, Le Y (2012) High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol 44:629–638

    Article  CAS  PubMed  Google Scholar 

  25. Gopi V, Parthasarathy A, Umadevi S, Vellaichamy E (2013) Angiotensin-II down-regulates cardiac natriuretic peptide receptor-A mediated anti-hypertrophic signaling in experimental rat hearts. Indian J Exp Biol 51:48–55

    CAS  PubMed  Google Scholar 

  26. Gauquelin G, Schiffrin EL, Garcia R (1991) Downregulation of glomerular and vascular atrial natriuretic factor receptor subtypes by angiotensin II. J Hypertens 9:1151–1160

    CAS  PubMed  Google Scholar 

  27. Arise KK, Pandey KN (2006) Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C. Biochem Biophys Res Commun 349:131–135

    Article  CAS  PubMed  Google Scholar 

  28. Prathapan A, Vineetha VP, Abhilash PA, Raghu KG (2013) Boerhaavia diffusa L. attenuates angiotensin II-induced hypertrophy in H9c2 cardiac myoblast cells via modulating oxidative stress and down-regulating NF-κβ and transforming growth factor β1. Br J Nutr 110:1201–1210

    Article  CAS  PubMed  Google Scholar 

  29. Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA (2011) Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol 589:939–951

    Article  PubMed Central  PubMed  Google Scholar 

  30. Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859

    Article  CAS  PubMed  Google Scholar 

  31. Tian J, Guo X, Liu XM, Liu L, Weng QF, Dong SJ, Knowlton AA, Yuan WJ, Lin L (2013) Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res 98:391–401

    Article  CAS  PubMed  Google Scholar 

  32. Qin F, Patel R, Yan C, Liu W (2006) NADPH oxidase is involved in angiotensin II-induced apoptosis in H9c2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med 40:236–246

    Article  CAS  PubMed  Google Scholar 

  33. Liao W, Xiao Q, Tchikov V, Fujita KI, Yang W, Wincovitch S, Srinivasula SM (2008) CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-κB activation. Curr Biol 18:641–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Garg R, Pandey KN (2003) Angiotensin II-mediated negative regulation of Npr1 promoter activity and gene transcription. Hypertension 41:730–736

    Article  CAS  PubMed  Google Scholar 

  35. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103:17985–17990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yao FR, Sun CW, Chang SK (2010) Morton lentil extract attenuated angiotensin II-induced cardiomyocyte hypertrophy via inhibition of intracellular reactive oxygen species levels in vitro. J Agric Food Chem 58:10382–10388

    Article  CAS  PubMed  Google Scholar 

  37. Gul R, Shawl AI, Kim SH, Kim UH (2012) Cooperative interaction between reactive oxygen species and Ca2+ signals contributes to angiotensin II-induced hypertrophy in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 302:H901–H909

    Article  CAS  PubMed  Google Scholar 

  38. Hu TP, Xu FP, Li YJ, Luo JD (2006) Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes. Acta Pharmacol Sin 27:419–422

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Zhou J, An W, Lin Y, Yang Y, Zang W (2010) Apocynin attenuates pressure overload-induced cardiac hypertrophy in rats by reducing levels of reactive oxygen species. Can J Physiol Pharmacol 88:745–752

    Article  CAS  PubMed  Google Scholar 

  40. Shih NL, Cheng TH, Loh SH, Cheng PY, Wang DL, Chen YS, Liu SH, Liew CC, Chen JJ (2001) Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 283:143–148

    Article  CAS  PubMed  Google Scholar 

  41. Mizuno K, Tani M, Hashimoto S, Niimura S, Sanada H, Watanabe H et al (1992) Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on cardiac hypertrophy and the tissue angiotensin II content in spontaneously hypertensive rats. Life Sci 51:367–374

    Article  CAS  PubMed  Google Scholar 

  42. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172:2522–2529

    Article  CAS  PubMed  Google Scholar 

  43. Essick EE, Ouchi N, Wilson RM, Ohashi K, Ghobrial J, Shibata R, Pimentel DR, Sam F (2011) Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling. Am J Physiol Heart Circ Physiol 301:H984–H993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Li C (2004) NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 287:H1712–H1720

    Article  CAS  PubMed  Google Scholar 

  46. Gupta S, Young D, Sen S (2005) Inhibition of NF-κB induces regression of cardiac hypertrophy, independent of blood pressure control, in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 289:H20–H29

    Article  CAS  PubMed  Google Scholar 

  47. Haneda M, Kikkawa R, Maeda S, Togawa M, Koya D, Horide N, Kajiwara N, Shigeta Y (1991) Dual mechanism of angiotensin II inhibits ANP-induced mesangial cGMP accumulation. Kidney Int 40:188–194

    Article  CAS  PubMed  Google Scholar 

  48. Izumo S, Nadal Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci 85:339–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    CAS  PubMed  Google Scholar 

  50. Sadoshima J, Izumo S (1993) Signal transduction pathways of angiotensin II–induced c-fos gene expression in cardiac myocytes in vitro: roles of phospholipidderived second messengers. Circ Res 73:424–438

    Article  CAS  PubMed  Google Scholar 

  51. Allen IS, Cohen N, Dhallan R, Gaa ST, Lederer WJ, Rogers TB (1988) Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into underlying biochemical mechanisms. Circ Res 62:524–534

    Article  CAS  PubMed  Google Scholar 

  52. Sumners C, Myers LM (1991) Angiotensin II decreases cGMP levels in neuronal cultures from rat brain. Am J Physiol 260:C79–C87

    CAS  PubMed  Google Scholar 

  53. Joubert S, Labrecque J, De Léan A (2001) Reduced activity of the NPR-A kinase triggers dephosphorylation and homologous desensitization of the receptor. Biochemistry 40:11096–11105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out by the research grants sanctioned to Dr.EV from UGC and CSIR New Delhi, India, and are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elangovan Vellaichamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopi, V., Subramanian, V., Manivasagam, S. et al. Angiotensin II down-regulates natriuretic peptide receptor-A expression and guanylyl cyclase activity in H9c2 (2-1) cardiac myoblast cells: Role of ROS and NF-κB. Mol Cell Biochem 409, 67–79 (2015). https://doi.org/10.1007/s11010-015-2513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2513-0

Keywords

Navigation