Skip to main content
Log in

The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Conflicting associations between define (KCNJ11) variations and susceptibility to late-onset (>40 years old) type 2 diabetes mellitus (T2DM) have been reported in different ethnic groups. We investigated whether the E23K (G→A, rs5219) or A190A (C→T, rs5218) variations in KCNJ11 are associated with early-onset T2DM and blood pressure in the Chinese population. Case-control study of 175 unrelated Chinese patients with early-onset T2DM (age of onset <40 years old) who receive (ins+, n = 57) or do not receive insulin (ins−, n = 118), and 182 non-diabetic control subjects. PCR-direct sequencing was performed to genotype E23K and A190A; the genotypic frequencies and associations with clinical characteristics were analyzed. The genotypic frequencies of E23K-GA+AA were higher and A190A-TT was lower in the early-onset T2DM group, especially the T2D-ins+ group, compared to the non-diabetic control group (p < 0.01 or 0.05, respectively). In non-diabetic subjects, E23K-AA carriers had significantly higher 2 h plasma glucose and lower 2 h insulin than E23K-GG carriers (both p < 0.05). A190A-TT or E23K-GG carriers had higher systolic blood pressure (SBP) than CC or AA carriers in the non-diabetic control and T2DM groups (both p < 0.05). In the T2DM ins+ group, E23K-AA carriers had lower onset age and duration of diabetes and higher BMI than GG carriers, and A190A-TT carriers had higher SBP than CC carriers (all p < 0.05). The E23K-GA or AA genotypes may increase the susceptibility to early-onset T2DM, while A190A-TT may protect against early-onset T2DM. On the other hand the A190A-TT or E23K-GG genotypes may increase the risk of hypertension in the Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101. doi:10.1056/NEJMoa0908292

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310:948–959. doi:10.1001/jama.2013.168118

    Article  CAS  PubMed  Google Scholar 

  3. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:2339–2350. doi:10.1056/NEJMra0906948

    Article  CAS  PubMed  Google Scholar 

  4. Fajans SS, Bell GI (2011) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34:1878–1884. doi:10.2337/dc11-0035

    Article  PubMed Central  PubMed  Google Scholar 

  5. Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51(Suppl 3):S368–S376

    Article  CAS  PubMed  Google Scholar 

  6. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  CAS  PubMed  Google Scholar 

  7. Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO J 17:3290–3296. doi:10.1093/emboj/17.12.3290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, Feng B, Zhao M, Zhuang L, Zheng T, Friedman TC, Xiang K (2013) Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 56:2609–2618. doi:10.1007/s00125-013-3031-9

    Article  CAS  PubMed  Google Scholar 

  10. Bonnefond A, Philippe J, Durand E, Dechaume A, Huyvaert M, Montagne L, Marre M, Balkau B, Fajardy I, Vambergue A, Vatin V, Delplanque J, Le Guilcher D, De Graeve F, Lecoeur C, Sand O, Vaxillaire M, Froguel P (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 7:e37423. doi:10.1371/journal.pone.0037423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC, Kim SY, Lee HK, Park KS (2007) Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med 24:178–186. doi:10.1111/j.1464-5491.2006.02050.x

    Article  CAS  PubMed  Google Scholar 

  12. Doi Y, Kubo M, Ninomiya T, Yonemoto K, Iwase M, Arima H, Hata J, Tanizaki Y, Iida M, Kiyohara Y (2007) Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: the Hisayama study. Diabetes 56:2829–2833. doi:10.2337/db06-1709

    Article  CAS  PubMed  Google Scholar 

  13. Lyssenko V, Almgren P, Anevski D, Orho-Melander M, Sjogren M, Saloranta C, Tuomi T, Groop L (2005) Genetic prediction of future type 2 diabetes. PLoS Med 2:e345. doi:10.1371/journal.pmed.0020345

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41:1511–1515. doi:10.1007/s001250051098

    Article  CAS  PubMed  Google Scholar 

  15. Schwanstecher C, Meyer U, Schwanstecher M (2002) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 51:875–879

    Article  CAS  PubMed  Google Scholar 

  16. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81:133–176

    Article  CAS  PubMed  Google Scholar 

  17. Kokubo Y, Tomoike H, Tanaka C, Banno M, Okuda T, Inamoto N, Kamide K, Kawano Y, Miyata T (2006) Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res 29:611–619. doi:10.1291/hypres.29.611

    Article  CAS  PubMed  Google Scholar 

  18. Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguchi Y, Moritani M, Kunika K, Nakamura N, Yoshikawa T, Yasui N, Shiota H, Tanahashi T, Itakura M (2007) SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet 52:781–793. doi:10.1007/s10038-007-0190-x

    Article  CAS  PubMed  Google Scholar 

  19. Duan RF, Cui WY, Wang H (2011) Association of the antihypertensive response of iptakalim with KCNJ11 (Kir6.2 gene) polymorphisms in Chinese Han hypertensive patients. Acta Pharmacol Sin 32:1078–1084. doi:10.1038/aps.2011.85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69. doi:10.2337/dc10-S062

    Article  PubMed Central  Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Yorifuji T, Nagashima K, Kurokawa K, Kawai M, Oishi M, Akazawa Y, Hosokawa M, Yamada Y, Inagaki N, Nakahata T (2005) The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J Clin Endocrinol Metab 90:3174–3178. doi:10.1210/jc.2005-0096

    Article  CAS  PubMed  Google Scholar 

  24. Chan JC, Cheung CK, Swaminathan R, Nicholls MG, Cockram CS (1993) Obesity, albuminuria and hypertension among Hong Kong Chinese with non-insulin-dependent diabetes mellitus (NIDDM). Postgrad Med J 69:204–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ko GT, Chan JC, Yeung VT, Chow CC, Li JK, Lau MS, Mackay IR, Rowley MJ, Zimmet P, Cockram CS (1998) Antibodies to glutamic acid decarboxylase in young Chinese diabetic patients. Ann Clin Biochem 35(Pt 6):761–767

    Article  PubMed  Google Scholar 

  26. Aguilar-Salinas CA, Reyes-Rodriguez E, Ordonez-Sanchez ML, Torres MA, Ramirez-Jimenez S, Dominguez-Lopez A, Martinez-Francois JR, Velasco-Perez ML, Alpizar M, Garcia-Garcia E, Gomez-Perez F, Rull J, Tusie-Luna MT (2001) Early-onset type 2 diabetes: metabolic and genetic characterization in the mexican population. J Clin Endocrinol Metab 86:220–226. doi:10.1210/jcem.86.1.7134

    CAS  PubMed  Google Scholar 

  27. Xiong C, Zheng F, Wan J, Zhou X, Yin Z, Sun X (2006) The E23K polymorphism in Kir6.2 gene and coronary heart disease. Clin Chim Acta 367:93–97. doi:10.1016/j.cca.2005.11.032

    Article  CAS  PubMed  Google Scholar 

  28. Waugh NR, Shyangdan D, Taylor-Phillips S, Suri G, Hall B (2013) Screening for type 2 diabetes: a short report for the National Screening Committee. Health Technol Assess 17:1–90. doi:10.3310/hta17350

    CAS  PubMed  Google Scholar 

  29. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572

    Article  CAS  PubMed  Google Scholar 

  30. Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K, Bell GI, Patterson BW, Nichols CG, Polonsky KS (2009) Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58:1869–1878. doi:10.2337/db09-0025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shimajiri Y, Yamana A, Morita S, Furuta H, Furuta M, Sanke T (2013) Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patients with type 2 diabetes. J Diabetes Investig 4:445–449. doi:10.1111/jdi.12070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20. doi:10.1371/journal.pbio.0000020

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yang L, Zhou X, Luo Y, Sun X, Tang Y, Guo W, Han X, Ji L (2012) Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals. Mol Biol Rep 39:645–659. doi:10.1007/s11033-011-0782-6

    Article  CAS  PubMed  Google Scholar 

  34. Weinberger MH, Fineberg NS (1991) Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 18:67–71

    Article  CAS  PubMed  Google Scholar 

  35. Caro CG, Pedley TJ, Schroter RC, Seed WA (2012) The Mechanics of the circulation, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  36. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the Project of National Natural Science Foundation of China (Nos. 81471012, 81270876, 30771022, and 30971384) and the Shanghai Scientific & Technical Committee Foundation (Nos. 10XD1403400 and 06ZR14051). YL was supported by NIH Grant SC1DK087655 and SC1DK104821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Liu.

Additional information

Langen Zhuang, Yu Zhao and Weijing Zhao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Zhao, Y., Zhao, W. et al. The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem 404, 133–141 (2015). https://doi.org/10.1007/s11010-015-2373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2373-7

Keywords

Navigation