Skip to main content
Log in

High sugar-induced repression of antioxidant and anti-apoptotic genes in lens: Reversal by pyruvate

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Impairment of vision in diabetes has been suggested to be due to an acceleration of the polyol pathway in the lens as well as in the retina. This acceleration is attributed largely to the rate-limiting steps of glycolysis and consequent diversion of glucose in the polyol pathway with its consequent effects on diverse tissue transport and redox activities. In addition, high sugar also induces a generalized oxidative stress via generating superoxide and its derivatization to other reactive oxygen species (ROS). While the immediate toxicity of hyperglycemia could be linked to the acceleration of this pathway, we hypothesize that in the long term, the toxic effects of the high sugar level are due to an upregulation of certain microRNAs (as we have shown before) and consequent repression of the transcription and translation of many antioxidant and anti-apoptotic genes. Therefore, in the present study, we measured the expression levels of certain major antioxidant and pro- and anti-apoptotic mRNAs in the lenses of mice made hyperglycemic by feeding a high galactose diet, without or with fortification with 1 % sodium pyruvate-a potent ROS scavenger. As speculated, the expression of several antioxidant and anti-apoptotic mRNAs has been found to be significantly repressed in the lenses of animals fed a high galactose diet. Such repression was significantly prevented by pyruvate. Thus, the findings also strongly suggest that visual impairment induced by the diabetic hyperglycemia could be treatable by administration of certain anti-microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eederer F, Hiller R, Taylor HR (1981) Senile lens changes in two population studies. Am J Ophthalmol 91:381–395

    Article  Google Scholar 

  2. Neilson NV, Vending T (1984) Prevalence of cataracts in insulin dependent and noninsulin dependent diabetes mellitus. Acta Ophthalmol 62:595–602

    Google Scholar 

  3. Klein BEK, Klein R, Moss SE (1985) Prevalence of cataracts in a population based study of persons with diabetes mellitus. Ophthalmology 92:1191–1196

    Article  CAS  PubMed  Google Scholar 

  4. Row N, Mitchel P, Cumming R, Wans JJ (2000) Diabetes, fasting blood glucose and age related cataracts. The blue mountain eye study. Ophthalmic Epidemiol 7:103–114

    Article  Google Scholar 

  5. Bensen WE (1992) Cataract surgery and diabetic retinopathy. Curr Opin Ophthalmol 3:396–400

    Article  Google Scholar 

  6. McCarty CA, Mukesh BN, Fu CL, Taylor HR (1999) Epidemiology of cataract in Australia. Am J Ophthalmolol 128:446–465

    Article  CAS  Google Scholar 

  7. Chaikoff IL, Lachman GS (1933) Occurrence of cataracts in experimental pancreatic diabetes. Proc Soc Exp Biol Med 31:237–241

    Article  Google Scholar 

  8. Von-Sallmann L, Caravaggio L, P Grimes, Collins EM (1958) Morphological study on alloxan-induced cataract. Arch Ophthalmol 59:55–67

    Article  CAS  Google Scholar 

  9. Kok-Van Alphen CC, Cohen EM (1950) The occurrence of cataract in alloxan diabetic rats. Acta Physiol Pharmacol Neerl 1:400–407

    CAS  PubMed  Google Scholar 

  10. Patterson JW (1951) Development of diabetic cataracts. Am J Ophthalmol 165:61–65

    CAS  Google Scholar 

  11. Varma SD, Kinoshita JH (1974) Sorbitol pathway in diabetic and galactosemic rat lens. Biochim Biophys Acta 338:632–640

    Article  CAS  Google Scholar 

  12. Patterson JW (1953) Effect of lowered blood sugar on the development of diabetic cataracts. Am J Physiol 172:77–82

    CAS  PubMed  Google Scholar 

  13. Patterson JW (1954) Effect of partial starvation on development of diabetic cataract. Proc Soc Exp Biol Med 87:395

    Article  CAS  PubMed  Google Scholar 

  14. UK Prospective Diabetic Study Group (1998) Effect of intensive blood glucose control with metformin on the complications of over-weight patients with type 2 diabetes. Lancet 352:654–865

    Article  Google Scholar 

  15. Diabetes control and complication trial research Group (DCCT) (1993) The effect of intensive treatment of diabetic on the development and progression of long term complication of insulin dependent diabetes mellitus. N Engl J Med 329:986–997

    Google Scholar 

  16. Epidemiology of diabetes intervention and complication study research group (EDIC) (2005) Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N Engl J Med 353:2643–2653

    Article  Google Scholar 

  17. Genuth S (1995) A case for blood glucose control. Adv Intern Med 40:573–623

    CAS  PubMed  Google Scholar 

  18. Mitchell HS, Dodge WMI (1935) Cataract in rats fed on high lactose rations. J Nutr 9:37–49

    CAS  Google Scholar 

  19. Kinoshita JH, Merola LO, Dikmak E (1962) The accumulation of dulcitol and water in rabbit lens incubated with galactose. Biochim Biophys Acta 62:176–178

    Article  CAS  PubMed  Google Scholar 

  20. Dische Z, Borenfund E, Zelmenis G (1956) Proteins and protein synthesis in Rat lenses with galactose cataract. Arch Ophthalmol 55:633–642

    Article  CAS  Google Scholar 

  21. Frank RN, Kern RJ, Kennedy RA, Frank KW (1983) Galactose induced retinal basement membrane thickening. Prevention by sorbinil. Invest Ophthalmol Vis Sci 24:1519–1524

    CAS  PubMed  Google Scholar 

  22. Engerman RL, Kern TS (1984) Experimental galactosemia produced diabetic like retinopathy. Diabetes 33:97–100

    Article  CAS  PubMed  Google Scholar 

  23. Kador PF, Takahashi Y, Wyman M, Ferris F III (1995) Diabetes like peripheral retinal changes in galactose fed dogs. Arch Ophthalmol 113:352–354

    Article  CAS  PubMed  Google Scholar 

  24. Kowluru RA, Kern TS, Engerman RL, Armstrong D (1996) Abnormalities of retinal metabolism in diabetes or experimental galactosemia III. Effects of antioxidants. Diabetes 45:1233–1237

    Article  CAS  PubMed  Google Scholar 

  25. Kowluru RA (2005) Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal 7:1581–1587

    Article  CAS  PubMed  Google Scholar 

  26. Kowluru RN, Tang J, Kern TS (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia VII. Effect of long term administration of antioxidants on the development of diabetic retinopathy. Diabetes 50:1938–1942

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy A, Frank RN, Varma SD (1983) Aldose reductase activity in retinal and cerebral micro vessels and cultured vascular cells. Invest Ophthalmol Vis Sci 24:1250–1258

    CAS  PubMed  Google Scholar 

  28. Kador PF, Akagi Y, Terubayashi H, Wyman M, Kinoshita JH (1988) Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 106:1099–1102

    Article  CAS  PubMed  Google Scholar 

  29. Chalk C, Benstead TJ, Moore F (2007) Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004572 (Article No: CD004572)

    PubMed  Google Scholar 

  30. O’Hare JP, Morgan MH, Alden P, Chissel S, O’Brien ADR, Corrall JM (1988) Aldose reductase inhibition in diabetic neuropathy: clinical and neurophysiological studies of one year’s treatment with sorbinil. Diabet Med 5:537–542

    Article  PubMed  Google Scholar 

  31. NEI Clinical Study (1990) A randomized trial of sorbinil, an aldose reductase inhibitor in diabetic retinopathy. Arch Ophthalmol 108:1234–1244

    Article  Google Scholar 

  32. Varma SD, Hegde KR, Henein M (2003) Oxidative damage to mouse lens in culture. Protective effect of pyruvate. Biochim Biophys Acta 1621:246–252

    Article  CAS  PubMed  Google Scholar 

  33. Hegde KR, Varma SD (2004) Morphogenetic and apoptotic changes in diabetic cataract. Prevention by pyruvate. Mol Cell Biochem 262:233–237

    Article  CAS  PubMed  Google Scholar 

  34. Hegde KR, Varma SD (2005) Prevention of cataract by pyruvate in diabetic mice. Mol Cell Biochem 269:115–120

    Article  CAS  PubMed  Google Scholar 

  35. Varma SD, Hegde KR, Kovtun S (2005) Attenuation and delay of diabetic cataracts by antioxidants. Effectiveness of pyruvate after onset of cataract. Ophthalmologica 219:309–315

    Article  CAS  PubMed  Google Scholar 

  36. Hegde KR, Varma SD (2004) Protective effect of ascorbate against oxidative stress in the mouse lens. Biochim Biophys Acta 1670:12–18

    Article  CAS  PubMed  Google Scholar 

  37. Hegde KR, Varma SD (2008) Oxidative stress to retina. Prevention by pyruvate. Ophthalmologica 222:294–298

    Article  Google Scholar 

  38. Hegde KR, Kovtun S, Varma SD (2010) Inhibition of glycolysis in retina by oxidative stress. Prevention by pyruvate. Mol Cell Biochem 343:101–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Monnier VM, Cerami A (1982) Non-enzymatic glycosylation and browning in diabetes and aging. Studies on lens proteins. Diabetes 31(3):57–63

    Article  CAS  Google Scholar 

  40. Kondo R, Kahn R (2004) Altered insulin signaling in retinal tissue in diabetic states. J Biol Chem 279:37997–38006

    Article  CAS  PubMed  Google Scholar 

  41. Nagaraj RH, Monnier VM (1992) Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Mallard reaction with ascorbate and ribose. Biochim Biophys Acta 5(1116):34–42

    Article  Google Scholar 

  42. Chellan P, Nagaraj RH (1999) Protein crosslinking by the Maillard reaction: di-carbonyl-derived imidazolium crosslinks in aging and diabetes. Arch Biochem Biophys 368:98–104

    Article  CAS  PubMed  Google Scholar 

  43. Shamsi FA, Lin K, Sady C, Nagaraj RH (1998) Methylglyoxal derived modification in lens aging and cataract formation. Invest Ophthalmol Vis Sci 39:2355–2364

    CAS  PubMed  Google Scholar 

  44. Richardson HB (1925) The capacity to oxidize carbohydrate as determined by the respiratory quotient. Phys Biol Chem Exp Pharmakol 24:588–593

    CAS  Google Scholar 

  45. Nakaya Y, Ohnaka M, Sakamoto S, Niwa Y, Okada K, Normura M, Hara T, Kusonki M (1998) Respiratory quotient in patients with noninsulin dependent diabetes mellitus treated with insulin and oral hypoglycemic agents. Ann Nutr 42:330–340

    Google Scholar 

  46. dos Santos KC, Pereira Braga C, Octavio Barbanera P, Ferreira Seiva FR, Fernandes Junior A et al (2014) Cardiac Energy Metabolism and Oxidative Stress Biomarkers in Diabetic Rat Treated with Resveratrol. PLoS One 9:e102775

    Article  Google Scholar 

  47. Hegde KR, Varma SD (2009) Electron impact mass spectroscopic studies on mouse retinal fatty acids. Ophthalmic Res 42:9–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Terry TL (1942) Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens I. Preliminary report. Am J Ophthalmol 25:203–204

    Article  Google Scholar 

  49. Schocket SS, Esterson J, Bradford B, Michaelis M, Richards RD (1972) Induction of cataracts in mice by exposure to oxygen. Isr J Med Sci 8:1596–1601

    CAS  PubMed  Google Scholar 

  50. Palmquist B-M, Philipson BO, Barr P-O (1984) Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol 68:113–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Varma SD, Ets TK, Richards RD (1977) Protection against superoxide radicals in rat lens. Ophthalmic Res 9:421–443

    Article  CAS  Google Scholar 

  52. Varma SD, Kumar S, Richards RD (1979) Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci 76:3504–3506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Varma SD, Chand D, Sharma YR, Kuck JF, Richards RD (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–57

    Article  CAS  PubMed  Google Scholar 

  54. Pande J, Hanlon E, Pande A (2002) A comparison of the environment of thiol groups in bovine and human gamma crystallins using Raman spectroscopy. Exp Eye Res 75:359–363

    Article  CAS  PubMed  Google Scholar 

  55. Babizhayev MA, Deyev AI, Linberg LF (1988) Lipid peroxidation as a possible cause of cataract. Mech Ageing Dev 44:69–89

    Article  CAS  PubMed  Google Scholar 

  56. Lou MF, Dickerson JE (1955) Protein thiol mixed disulfide oxidation in human lens. Exp Eye Res 2:889–896

    Google Scholar 

  57. Phil Clark JI (2013) Self-assembly of protein aggregates in ageing disorders: the lens and cataract model. Trans R Soc B 368:20120104

    Article  Google Scholar 

  58. Varma SD et al (1977) Diabetic cataracts and flavonoids. Science 195:205–206

    Article  CAS  PubMed  Google Scholar 

  59. Roberson JM, Donner AP, Trevithick JR (1991) A possible role of vitamins C and E in cataract prevention. Am J Clin Nutr 53:346S–351S

    Google Scholar 

  60. Varma SD (1991) Scientific basis for medical therapy of cataracts by antioxidants. Am J Clin Nutr 53:335S–345S

    CAS  PubMed  Google Scholar 

  61. Vinison JA, Courey JM, Maro NP (1992) Comparison of two forms of vitamin C on galactose cataracts. Nutr Res 12:915–922

    Article  Google Scholar 

  62. Devamanoharan PS, Farrell R, Varma SD (1995) Levels of SOD mRNA in rat lens: effect of aging. Mol Cell Biochem 152:175–178

    Article  CAS  PubMed  Google Scholar 

  63. Hulsmans M, Keyzer DD, Holvoet P (2011) MicroRNA regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 25:2515–2527

    Article  CAS  PubMed  Google Scholar 

  64. Vandesompele J, De Perter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 18:1–12

    Google Scholar 

  65. Varma SD, Kovtun S, Hegde K, Yin J, Ramanath J (2012) Effect of high sugar levels on miRNA expression. Studies with galactosemic mice lenses. Mol Vis 18:1609–1618

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Varma SD, Kovtun S (2013) Protective effect of caffeine against high sugar induced transcription of microRNAs and consequent gene silencing: a study of galactosemic mice. Mol Vis 19:493–500

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  68. Ambrose V (2004) The functions of microRNAs. Nature 431:350–355

    Article  Google Scholar 

  69. Chang TC, Mendel JT (2007) MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239

    Article  CAS  PubMed  Google Scholar 

  70. Wang Z, Liu Y, Han N, Chen X, Yu W, Zhang W, Zou F (2010) Profiles of oxidative stress—related microRNA and mRNA expression in auditory cells. Brain Res 1346:14–25

    Article  CAS  PubMed  Google Scholar 

  71. Sangokoya C, Telen MJ, Chi JT (2010) MicroRNA mir-144 modulated oxidative stress tolerance and associated with anemia severity in sickle cell disease. Blood 116:4338–4348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kantorow M, Hawse JR, Colwell TL, Behaved S, Ouzzrri GO, Reddy VN, Hejtmancik JF (2004) Methionine sulfide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci 101:9654–9659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Suh JK, Lawrence L, Poulsen LL, Ziegler DM, Robertus JD (1999) Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum. Proc Natl Acad Sci USA 96:2687–2691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Henderson MC, Krueger SK, Stevens JF, Williams DE (2004) Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thiourea and oxidation of glutathione. Chem Res Toxicol 17:633–640

    Article  CAS  PubMed  Google Scholar 

  75. Zhao W, Devamanoharan PS, Henein M, Ali AH, Varma SD (2000) Diabetes-induced biochemical changes in rat lens: attenuation of cataractogenesis by pyruvate. Diabetes Obes Metab 2(3):165–174

    Article  CAS  PubMed  Google Scholar 

  76. Kalakonda S, Hegde KR, Varma SD (2004) Induction of apoptosis in galactosemic lenses. Prevention by Pyruvate. Poster presentation. Association for Research in Vision and Ophthalmology, Fort Lauderdale

    Google Scholar 

  77. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187

    Article  CAS  PubMed  Google Scholar 

  78. van Rooij E, Purcell A, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110:483–495

    Article  Google Scholar 

Download references

Acknowledgments

We highly thank QIAGEN Genomic Services for many discussions and supplies. Technical assistance was kindly provided by Kayla Vondy. Funding source. NIH-NEI.-01292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shambhu D. Varma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, S.D., Chandrasekaran, K. High sugar-induced repression of antioxidant and anti-apoptotic genes in lens: Reversal by pyruvate. Mol Cell Biochem 403, 149–158 (2015). https://doi.org/10.1007/s11010-015-2345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2345-y

Keywords

Navigation