Skip to main content
Log in

Correlation between oxidative stress and G6PD activity in neonatal jaundice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fetal distress represents a pathophysiological condition in which oxygen is not available to the fetus in sufficient quantities. In cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency, under conditions of oxidative stress, the residual G6PD and complimentary antioxidant mechanisms may become insufficient to neutralize the large amounts of ROS and to prevent severe hemolysis. Alteration in the oxidant–antioxidant profile is also known to occur in neonatal jaundice. The study group included 22 neonates presented with fetal distress during labor and 24 neonates with no evidence of fetal distress (control group). Umbilical cord blood samples were taken immediately after delivery, and the following blood tests were carried out after birth and at discharge from the hospital: erythrocyte count, total bilirubin, G6PD activity, and parameters presenting oxidative status [thiobarbituric acid reactive substances (TBARS), NO, O2 , H2O2, SOD, CAT, O2 /SOD, and H2O2/CAT]. There were no significant differences in TBARS and NO values among neonates with or without fetal distress. However, the values of O2 , H2O2, SOD, O2 /SOD, and H2O2/CAT among neonates born after fetal distress were significantly higher than in neonates without fetal distress (p < 0.01). In neonates with fetal distress, the total number of RBCs at delivery was significantly lower, accompanied with higher bilirubin content. Also neonates with fetal distress had lower activity of G6PD and lower CAT activity. Higher values of oxidative stress parameters in newborns delivered after fetal distress do not indicate strictly what occurred first—oxidative stress or basic lower G6PD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

G6PD:

Glucose 6-phosphate dehydrogenase

GPx:

Glutathione peroxidase

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

HO:

Heme-Oxygenase

MDA:

Malondialdehyde

NO:

Nitric oxide

O2 :

Superoxide

OS:

Oxidative stress

RBC:

Red blood cell

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

References

  1. Gitto E, D’Angelo G, Cusumano E, Reiter RJ (2012). Oxidative stress of newborn. In: Özdemir O (ed) Complementary pediatrics, ISBN: 978-953-51-0155-0

  2. Wang Y, Walsh SW (1996) Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. J Soc Gynecol Investig 3(4):179–184

    Article  CAS  PubMed  Google Scholar 

  3. Sullivan JL, Newton RB (1988) Serum antioxidant activity in neonates. Arch Dis Child 63:748–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Perrone S, Tataranno ML, Stazzoni G, Del Vecchio A, Buonocore G (2012) Oxidative injury in neonatal erythrocytes. J Matern Fetal Neonatal Med 25(Suppl 5):104–108

    Article  CAS  PubMed  Google Scholar 

  5. Fereshtehnejad SM, Poorsattar Bejeh Mir K, Poorsattar Bejeh Mir A, Mohagheghi P (2012) Evaluation of the possible antioxidative role of bilirubin protecting from free radical related illnesses in neonates. Acta Med Iran 50(3):153–163

    CAS  PubMed  Google Scholar 

  6. Kaplan M, Hammerman C (2004) Glucose-6-phosphate dehydrogenase deficiency: a hidden risk for kernicterus. Semin Perinatol 28(5):356–64. Review

  7. Berg JM, Tymoczko JL, Stryer L (2002) Section 20.5, Glucose 6-phosphate dehydrogenase plays a key role in protection against reactive oxygen species. Biochemistry, 5th edn. W H Freeman, New York

  8. Kaplan M, Hammerman C (2002) Glucose-6-phosphate dehydrogenase deficiency: a potential source of severe neonatal hyperbilirubinaemia and kernicterus. Semin Neonatol 7(2):121–128. Review

  9. Kaandorp JJ, Benders M, Rademaker C, Torrance HL, Oudijk MA, de Haan TR et al (2010) Antenatal allopurinol for reduction of birth asphyxia induced brain damage ALLO-Trial); a randomized double blind placebo controlled multicenter study. BMC Pregnancy Childbirth 10:8

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  11. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  12. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Une, Boca Raton, pp 123–132

    Google Scholar 

  13. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38(1–2):161–170

    Article  CAS  PubMed  Google Scholar 

  14. Misra HP, Fridovich I (1972) The role of superoxide-anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  15. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 105–106

    Google Scholar 

  16. Beutler E (1994) G6PD deficinecy. Blood 11:3613–3636

    Google Scholar 

  17. Shoji H, Koletzko B (2007) Oxidative stress and antioxidant protection in the perinatal period. Curr Opin Clin Nutr Metab Care 10(3):324–328. Review

  18. Dahiya K, Tiwari AD, Shankar V, Kharb S, Dhankhar R (2006) Antioxidant status in neonatal jaundice before and after phototherapy. Indian J Clin Biochem 21(1):157–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kumar A, Pant P, Basu S, Rao GR, Khanna HD (2007) Oxidative stress in neonatal hyperbilirubinemia. J Trop Pediatr 53(1):69–71 Epub 2006 Dec 10

    Article  PubMed  Google Scholar 

  20. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly. Am J Physiol 271:1424–1437

    Google Scholar 

  21. Nikolic-Kokic A, Stevic Z, Blagojevic D, Davidovic D, Jones DR, Spasic MB (2006) Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS patients. Clin Chem Lab Med 44:589–593

    CAS  PubMed  Google Scholar 

  22. Surapaneni KM, Priya VV (2008) Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E, and antioxidant enzymes in neonatal jaundice patients. J Clin Diagn Res 3:827–832

    Google Scholar 

  23. Lee YS, Chou YH (2005) Antioxidant profiles in full term and preterm neonates. Chang Gung Med J 28(12):846–851

    PubMed  Google Scholar 

  24. Kaplan M, Hammerman C (2010) Glucose-6-phosphate dehydrogenase deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. Semin Fetal Neonatal Med 15(3):148–156

    Article  PubMed  Google Scholar 

  25. Dani C, Martelli E, Bertini G, Pezzati M, Filippi L, Rossetti M, Rizzuti G, Rubaltelli FF (2003) Plasma bilirubin level and oxidative stress in preterm infants. Arch Dis Child Fetal Neonatal Ed 88(2):F119–F123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Aycicek A, Erel O (2007) Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J Pediatr (Rio J) 83(4):319–322

    Google Scholar 

  27. Raicevic S, Cubrilo D, Arsenijević S, Vukcevic G, Zivkovic V, Vuletic M, Barudzic N, Andjelkovic N, Antonovic O, Jakovljevic V (2010) Oxidative stress in fetal distress: potential prospects for diagnosis. Oxid Med Cell Longev 3(3):214–318

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Grant No 175043 from the Minsitry of Science and Technological Development of the Republic of Serbia.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jakovljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raicevic, S., Eventov-Friedman, S., Bolevich, S. et al. Correlation between oxidative stress and G6PD activity in neonatal jaundice. Mol Cell Biochem 395, 273–279 (2014). https://doi.org/10.1007/s11010-014-2136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2136-x

Keywords

Navigation