Skip to main content

Advertisement

Log in

FGF21 inhibits apolipoprotein(a) expression in HepG2 cells via the FGFR1-ERK1/2-Elk-1 pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lipoprotein(a) [Lp(a)] is a highly atherogenic lipoprotein, whose metabolism is poorly understood. Efficient and secure drugs that can lower elevated plasma Lp(a) concentrations are currently lacking. Fibroblast growth factor-21 (FGF-21), a member of the FGFS super family, regulates glucose and lipid metabolism in hepatocytes and adipocytes via FGFR-ERK1/2 signaling. In this study, we investigated the molecular mechanisms that influence apolipoprotein(a) [apo(a)] biosynthesis. We also determined the effects of FGF21 on HepG2 cell apo(a) expression and secretion, as well as the mechanism of FGF21 in these effects. Results showed that FGF21 inhibited apo(a) expression at both mRNA and protein levels in a dose- and time--dependent manner and then suppressed the secretion of apo(a). These effects were attenuated by PD98059 (ERK1/2 inhibitor) and Elk-1 siRNA. PD166866 (FGFR1 inhibitor) also attenuated the FGF21-mediated inhibition of apo(a) expression and inhibited ERK1/2 and Elk-1 activation. These results demonstrate that FGF21 suppresses apo(a) expression via the FGFR1-ERK1/2-Elk-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berg K (1963) A new serum type system in man-the Lp system. Acta Pathol Microbiol Scand 59:369–382

    Article  CAS  PubMed  Google Scholar 

  2. Zlatohlávek L, Zídková K, Vrablík M, Haas T, Prusíková M, Svobodová H, Ceska R (2008) Lipoprotein(a) and its position among other risk factors of atherosclerosis. Physiol Res 57:777–783

    PubMed  Google Scholar 

  3. Nielsen LB, Juul K, Nordestgaard BG (1998) Increased degradation of lipoprotein(a) in atherosclerotic compared with nonlesioned aortic intima-inner media of rabbits: in vivo evidence that lipoprotein(a) may contribute to foam cell formation. Arterioscler Thromb Vasc Biol 18:641–649

    Article  CAS  PubMed  Google Scholar 

  4. Sotiriou SN, Orlova VV, Al-Fakhri N, Ihanus E, Economopoulou M, Isermann B, Bdeir K, Nawroth PP, Preissner KT, Gahmberg CG, Koschinsky ML, Chavakis T (2006) Lipoprotein(a) in atherosclerotic plaques recruits inflammatory cells through interaction with Mac-1 integrin. FASEB J 20:559–561

    CAS  PubMed  Google Scholar 

  5. Pedersen TX, McCormick SP, Tsimikas S, Bro S, Nielsen LB (2010) Lipoprotein(a) accelerates atherosclerosis in uremic mice. J Lipid Res 51:2967–2975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brunner C, Kraft HG, Utermann G, Muller HJ (1993) Cys4057 of apolipoprotein(a) is essential for lipoprotein(a) assembly. Proc Natl Acad Sci USA 90:11643–11647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Becker L, McLeod RS, Marcovina SM, Yao Z, Koschinsky ML (2001) Identification of a critical lysine residue in apolipoprotein B-100 that mediates noncovalent interaction with apolipoprotein(a). J Biol Chem 276:36155–36162

    Article  CAS  PubMed  Google Scholar 

  8. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330:132–137

    Article  CAS  PubMed  Google Scholar 

  9. Utermann G, Duba C, Menzel HJ (1988) Genetics of the quantitative Lp(a) lipoprotein trait. II. Inheritance of Lp(a) glycoprotein phenotypes. Hum Genet 78:47–50

    Article  CAS  PubMed  Google Scholar 

  10. Norata GD, Ballantyne CM, Catapano AL (2013) New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J 34:1783–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dieplinger H, Utermann G (1999) The seventh myth of lipoprotein (a): where and how is it assembled. Curr Opin Lipidol 10:275–283

    Article  CAS  PubMed  Google Scholar 

  12. Bonen DK, Hausman AM, Hadjiagapiou C, Skarosi SF, Davidson NO (1997) Expression of a recombinant apolipoprotein(a) in HepG2 cells. Evidence for intracellular assembly of lipoprotein(a). J Biol Chem 272:5659–5667

    Article  CAS  PubMed  Google Scholar 

  13. White AL, Rainwater DL, Hixson JE, Estlack LE, Lanford RE (1994) Intracellular processing of apo(a) in primary baboon hepatocytes. Chem Phys Lipids 67–68(123–133):114

    Google Scholar 

  14. Li H, Zhang J, Jia W (2013) Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med 7:25–30

    Article  PubMed  Google Scholar 

  15. Murata Y, Konishi M, Itoh N (2011) FGF21 as an endocrine regulator in lipid metabolism: from molecular evolution to physiology and pathophysiology. J Nutr Metab 2011:981315

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kharitonenkov A, Larsen P (2011) FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 22:81–86

    Article  CAS  PubMed  Google Scholar 

  17. Shen Y, Ma X, Zhou J, Pan X, Hao Y, Zhou M, Lu Z, Gao M, Bao Y, Jia W (2013) Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc Diabetol 12:124

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cong WT, Ling J, Tian HS, Ling R, Wang Y, Huang BB, Zhao T, Duan YM, Jin LT, Li XK (2013) Proteomic study on the protective mechanism of fibroblast growth factor 21 to ischemia-reperfusion injury. Can J Physiol Pharmacol 91:973–984

    Article  CAS  PubMed  Google Scholar 

  19. Reitman ML (2013) FGF21 mimetic shows therapeutic promise. Cell Metab 18:307–309

    Article  CAS  PubMed  Google Scholar 

  20. Ming AY, Yoo E, Vorontsov EN, Altamentova SM, Kilkenny DM, Rocheleau JV (2012) Dynamics and distribution of Klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J Biol Chem 287:19997–20006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cuevas-Ramos D, Aguilar-Salinas CA, Gómez-Pérez FJ (2012) Metabolic actions of fibroblast growth factor 21. Curr Opin Pediatr 24:523–529

    Article  CAS  PubMed  Google Scholar 

  23. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM, Maratos-Flier E (2011) Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996–3004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chennamsetty I, Claudel T, Kostner KM, Trauner M, Kostner GM (2012) Gene expression APOA FGF19 signaling cascade suppresses. Arterioscler Thromb Vasc Biol 32:1220–1227

    Article  CAS  PubMed  Google Scholar 

  25. Wei DH, Zhang XL, Wang R, Zeng JF, Zhang K, Yang J, Li S, Lin XL, Jiang ZS, Wang GX, Wang Z (2013) Oxidized lipoprotein(a) increases endothelial cell monolayer permeability via ROS generation. Lipids 48:579–586

    Article  CAS  PubMed  Google Scholar 

  26. Panek RL, Lu GH, Dahring TK, Batley BL, Connolly C, Hamby JM, Brown KJ (1998) In vitro biological characterization and antiangiogenic effects of PD 166866, a selective inhibitor of the FGF-1 receptor tyrosine kinase. J Pharmacol Exp Ther 286:569–577

    CAS  PubMed  Google Scholar 

  27. Nygaard EB, Vienberg SG, Ørskov C, Hansen HS, Andersen B (2012) Metformin stimulates FGF21 expression in primary hepatocytes. Exp Diabetes Res 2012:465282

    Article  PubMed Central  PubMed  Google Scholar 

  28. Adams AC, Kharitonenkov A (2013) FGF21 drives a shift in adipokine tone to restore metabolic health. Aging (Albany NY) 5:386–387

    Google Scholar 

  29. Chennamsetty I, Claudel T, Kostner KM, Baghdasaryan A, Kratky D, Levak-Frank S, Frank S, Gonzalez FJ, Trauner M, Kostner GM (2011) Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest 121:3724–3734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, Cai L, Belouski E, Chen C, Michaels ML, Li YS, Lindberg R, Wang M, Véniant M, Xu J (2009) FGF21N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 583:19–24

    Article  CAS  PubMed  Google Scholar 

  31. Gaich G, Chien JY, Fu H, Glass1 LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HE, David E (2013) Moller the effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metabolism 18:333–340

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Innovative Research Team for Science and Technology in Higher Educational Institutions of Hunan Province and Natural Science Foundation of China (No. 81070221) and Visiting Scholar Foundation of Key Laboratory for Biorheological Science, and Technology (Chongqing University) of Ministry of Education (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo Wang.

Additional information

Guohua Li: co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Li, G., He, X. et al. FGF21 inhibits apolipoprotein(a) expression in HepG2 cells via the FGFR1-ERK1/2-Elk-1 pathway. Mol Cell Biochem 393, 33–42 (2014). https://doi.org/10.1007/s11010-014-2044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2044-0

Keywords

Navigation