Skip to main content

Advertisement

Log in

Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15–30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N 6-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5′-N-ethylcarboxamidoadenosine, the A3 receptor agonist N 6-(3-iodobenzyl)adenosine-5′-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martens D, Lohse MJ, Rauch B, Schwabe U (1987) Pharmacological characterization of A1 adenosine receptors in isolated rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 336:342–348

    Article  CAS  PubMed  Google Scholar 

  2. Romano FD, MacDonald SG, Dobson JG (1989) Adenosine receptor coupling to adenylate cyclase of rat ventricular myocyte membranes. Am J Physiol 257:H1088–H1095

    CAS  Google Scholar 

  3. Xu D, Kong HY, Liang BT (1992) Expression and pharmacological characterization of a stimulatory subtype of adenosine receptor in fetal chick ventricular myocytes. Circ Res 70:56–65

    Article  CAS  PubMed  Google Scholar 

  4. Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N 6-[3-chlorobenzyl]-5′-N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res 40:138–145

    Article  CAS  PubMed  Google Scholar 

  5. Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M (1997) Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365

    Article  CAS  Google Scholar 

  6. Kitakaze M, Minamino T, Node K, Koretsune Y, Komamura K, Funaya H, Kuzuya T, Hori M (1998) Elevation of plasma adenosine levels may attenuate the severity of chronic heart failure. Cardiovasc Drugs Ther 12:307–309

    Article  CAS  PubMed  Google Scholar 

  7. Gan XT, Rajapurohitam V, Haist JV, Chidiac P, Cook MA, Karmazyn M (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312:27–34

    Article  CAS  PubMed  Google Scholar 

  8. Chung ES, Perlini S, Aurigemma GP, Fenton RA, Dobson JG, Meyer TE (1998) Effects of chronic adenosine uptake blockade on adrenergic responsiveness and left ventricular chamber function in pressure overload hypertrophy in the rat. J Hypertens 16:1813–1822

    Article  CAS  PubMed  Google Scholar 

  9. Xu X, Fassett J, Hu X, Zhu G, Lu Z, Li Y, Schnermann J, Bache RJ, Chen Y (2008) Ecto-5′-nucleotidase deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction. Hypertension 51:1557–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742

    Article  CAS  PubMed  Google Scholar 

  11. Loirand G, Guérin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    Article  CAS  PubMed  Google Scholar 

  12. Satoh S, Ueda Y, Koyanagi M, Kadokami T, Sugano M, Yoshikawa Y, Makino N (2003) Chronic inhibition of Rho kinase blunts the process of left ventricular hypertrophy leading to cardiac contractile dysfunction in hypertension-induced heart failure. J Mol Cell Cardiol 35:59–70

    Article  CAS  PubMed  Google Scholar 

  13. Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H, Kaibuchi K, Takeshita A (2004) Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 109:2234–2239

    Article  CAS  PubMed  Google Scholar 

  14. Fukui S, Fukumoto Y, Suzuki J, Saji K, Nawata J, Tawara S, Shinozaki T, Kagaya Y, Shimokawa H (2008) Long-term inhibition of Rho-kinase ameliorates diastolic heart failure in hypertensive rats. J Cardiovasc Pharmacol 51:317–326

    Article  CAS  PubMed  Google Scholar 

  15. Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D, Kelly DJ, Krum H (2008) Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 294:H1804–H1814

    Article  CAS  PubMed  Google Scholar 

  16. Shi J, Zhang YW, Summers LJ, Dorn GW II, Wei L (2008) Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. J Mol Cell Cardiol 44:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Shi J, Zhang YW, Yang Y, Zhang L, Wei L (2010) ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. J Mol Cell Cardiol 49:819–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zeidan A, Javadov S, Chakrabarti S, Karmazyn M (2008) Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64–72

    Article  CAS  PubMed  Google Scholar 

  19. Zeidan A, Javadov S, Karmazyn M (2006) Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101–111

    Article  CAS  PubMed  Google Scholar 

  20. Headrick JP, Peart JN, Reichelt ME, Haseler LJ (2011) Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta 1808:1413–1428

    Article  CAS  PubMed  Google Scholar 

  21. Pang T, Rajapurohitam V, Cook MA, Karmazyn M (2010) Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 298:H1382–H1390

    Article  CAS  PubMed  Google Scholar 

  22. Hardt SE, Sadoshima J (2010) Negative regulators of cardiac hypertrophy. Cardiovasc Res 63:500–509

    Article  Google Scholar 

  23. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  PubMed  Google Scholar 

  24. Moey M, Rajapurohitam V, Zeidan A, Karmazyn M (2012) Ginseng (Panax quinquefolius) attenuates leptin-induced cardiac hypertrophy through inhibition of p115Rho guanine nucleotide exchange factor-RhoA/Rho-associated, coiled-coil containing protein kinase-dependent mitogen-activated protein kinase pathway activation. J Pharmacol Exp Ther 339:746–756

    Article  Google Scholar 

  25. Lan C, Das D, Wloskowicz A, Vollrath B (2004) Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C. Am J Physiol Heart Circ Physiol 286:H165–H173

    Article  CAS  PubMed  Google Scholar 

  26. Bregeon J, Loirand G, Pacaud P, Rolli-Derkinderen M (2009) Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells. Am J Physiol Cell Physiol 297:C1062–C1070

    Article  CAS  PubMed  Google Scholar 

  27. Allahdadi KJ, Hannan JL, Tostes RC, Webb RC (2010) Endothelin-1 induces contraction of female rat internal pudendal and clitoral arteries through ETA receptor and rho-kinase activation. J Sex Med 7:2096–2103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Shatanawi A, Romero MJ, Iddings JA, Chandra S, Umapathy NS, Verin AD, Caldwell RB, Caldwell RW (2011) Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol 300:C1181–C1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hunter JC, Zeidan A, Javadov S, Kilić A, Rajapurohitam V, Karmazyn M (2009) Nitric oxide inhibits endothelin-1-induced neonatal cardiomyocyte hypertrophy via a RhoA-ROCK-dependent pathway. J Mol Cell Cardiol 47:810–818

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18:664–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  PubMed  Google Scholar 

  33. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891–895

    Article  CAS  PubMed  Google Scholar 

  34. Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169

    Article  CAS  PubMed  Google Scholar 

  35. Chiquet M, Tunç-Civelek V, Sarasa-Renedo A (2007) Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab 32:967–973

    Article  CAS  PubMed  Google Scholar 

  36. Aplin AE, Juliano RL (2001) Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton. J Cell Biol 155:187–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Annu Rev Biochem 81:637–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mozzicato S, Joshi BV, Jacobson KA, Liang BT (2004) Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J 18:406–408

    CAS  PubMed  Google Scholar 

  39. Xiang SY, Vanhoutte D, Del Re DP, Purcell NH, Ling H, Banerjee I, Bossuyt J, Lang RA, Zheng Y, Matkovich SJ, Miyamoto S, Molkentin JD, Dorn GW II, Brown JH (2011) RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Investig 21:3269–3276

    Article  Google Scholar 

  40. Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH (2010) Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 3:330–343

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Heart and Stroke Foundation of Ontario. Morris Karmazyn holds a Tier 1 Canada Research Chair in Experimental Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeidan, A., Gan, X.T., Thomas, A. et al. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem 385, 239–248 (2014). https://doi.org/10.1007/s11010-013-1832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1832-2

Keywords

Navigation