Skip to main content

Advertisement

Log in

Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclophosphamide (CPM), an alkylating agent is used as an immunosuppressant in rheumatoid arthritis and in the treatment of several cancers as well. In this study, Ellagic acid (EA), a naturally occurring plant polyphenol, was evaluated for its antigenotoxicity and antioxidant efficacy against the CPM-induced renal oxidative stress and genotoxicity in Swiss albino mice. The mice were given a prophylactic treatment of EA orally at a dose of 50 and 100 mg/kg body weight (b wt) for seven consecutive days before the administration of a single intraperitoneal (i.p.) injection of CPM at 50 mg/kg b wt. The modulatory effects of EA on CPM-induced nephrotoxicity and genotoxicity were investigated by assaying oxidative stress biomarkers, serum kidney toxicity markers, DNA fragmentation, alkaline unwinding assay, micronuclei (MN) assay, and by histopathological examination of kidney tissue. A single intraperitoneal administration of CPM in mice increased malondialdehyde level with depletion in glutathione content, antioxidant enzymes activities, viz. glutathione peroxidase, glutathione reductase, catalase, quinone reductase, induced DNA strand breaks, and MN induction. EA oral administration at both doses caused significant reduction in their levels, restoration in the activities of antioxidant enzymes, reduction in MN formation, and DNA fragmentation. Serum toxicity marker enzymes like BUN, creatinine, and LDH were also increased after CPM treatment which was significantly decreased in EA pretreated groups. Present findings suggest a prominent role of EA against CPM-induced renal injury, DNA damage, and genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EA:

Ellagic acid

CPM:

Cyclophosphamide

GSH:

Reduced glutathione

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

XO:

Xanthine oxidase

MDA:

Malondialdehyde

BUN:

Blood urea nitrogen

LDH:

Lactate dehydrogenase

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  2. Morton LW, Abu-Amsha Caccetta R, Puddey IB, Croft KD (2000) Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27:152–159

    Article  PubMed  CAS  Google Scholar 

  3. Zhao Z, Egashira Y, Sanada H (2004) Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J Nutr 134:3083–3088

    PubMed  CAS  Google Scholar 

  4. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Google Scholar 

  5. Ippoushi K, Takeuchi A, Azuma K (2009) Prevention of peroxynitrite-induced oxidation and nitration reactions by ellagic acid. Food Chem 112:185–188

    Article  CAS  Google Scholar 

  6. Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17

    Article  PubMed  CAS  Google Scholar 

  7. Heur YH, Zeng W, Stoner GD, Nemeth GA, Hilton B (1992) Synthesis of ellagic acid O-alkyl derivatives and isolation of ellagic acid as a tetrahexanoyl derivative from Fragaria ananassa. J Nat Prod 55:1402–1407

    Article  PubMed  CAS  Google Scholar 

  8. Mandal S, Ahuja A, Shivapurkar NM, Cheng SJ, Groopman JD, Stoner GD (1987) Inhibition of aflatoxin B1 mutagenesis in Salmonella typhimurium and DNA damage in cultured rat and human tracheobronchial tissues by ellagic acid. Carcinogenesis 8:1651–1656

    Article  PubMed  CAS  Google Scholar 

  9. Papoutsi Z, Kassi E, Tsiapara A, Fokialakis N, Chrousos GP, Moutsatsou P (2005) Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERα and ERβ. J Agric Food Chem 53:7715–7720

    Article  PubMed  CAS  Google Scholar 

  10. Yuce A, Ateşşahin A, Ceribası AO, Aksakal M (2007) Ellagic acid prevents cisplatin induced oxidative stress in liver and heart tissue of rats. Basic Clin Pharmacol Toxicol 101:345–349

    Article  PubMed  CAS  Google Scholar 

  11. Turk G, Atessahin A, Sonmez M, Ceribas AO, Yuce A (2008) Improvement of cisplatin induced injuries to sperm quality, the oxidant–antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril 89:1474–1481

    Article  PubMed  CAS  Google Scholar 

  12. Yu Y-M, Chang W-C, Wu C-H, Chiang S-Y (2005) Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem 16:675–681

    Article  PubMed  CAS  Google Scholar 

  13. Atessahin A, Ceribaş AO, Yuce A, Bulmus O, Ckim G (2007) Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats. Basic Clin Pharmacol Toxicol 100:121–126

    Article  PubMed  CAS  Google Scholar 

  14. Hwang JM, Cho JS, Kim TH, Lee YI (2010) Ellagic acid protects hepatocytes from damage by inhibiting mitochondrial production of reactive oxygen species. Biomed Pharmacother 64:264–270

    Article  PubMed  CAS  Google Scholar 

  15. Rogerio AP, Fontanari C, Borducchi E, Keller AC, Rusco M, Soares EG, Albuquerque DA, Faccioli LH (2008) Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur J Pharmacol 580:262–270

    Article  PubMed  CAS  Google Scholar 

  16. de Boer JG, Yang H, Holcroft J, Skov K (2004) Chemoprotection against N-nitrosomethylbenzylamine-induced mutation in the rat esophagus. Nutr Cancer 50:168–173

    Article  PubMed  Google Scholar 

  17. Ahn D, Putt D, Kresty L, Stoner GD, Fromm D, Hollenberg PF (1996) The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes. Carcinogenesis 17:821–828

    Article  PubMed  CAS  Google Scholar 

  18. Shepherd AG, Manson MM, Ball HW, McLellan LI (2000) Regulation of rat glutamate-cysteine ligase (γ-glutamylcysteine synthetase) subunits by chemopreventive agents and in aflatoxin B1-induced preneoplasia. Carcinogenesis 21:1827–1834

    Article  PubMed  CAS  Google Scholar 

  19. van der Logt EM, Roelofs HM, Nagengast FM, Peters WH (2003) Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24:1651–1656

    Article  PubMed  Google Scholar 

  20. Baumann F, Preiss R (1973) Cyclophosphamide and related anticancer drugs. J Chromatogr B 764:173–192

    Google Scholar 

  21. Fleming RE (1997) An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 17:1465–1545

    Google Scholar 

  22. Perini P, Calabrese M, Rinaldi L, Gallo P (2007) The safety profile of cyclophosphamide in multiple sclerosis therapy. Expert Opin Drug Saf 6:183–190

    Article  PubMed  CAS  Google Scholar 

  23. Uber WE, Self SE, Van Bakel AB, Pereira NL (2007) Acute antibody-mediated rejection following heart transplantation. Am J Transplant 7:2064–2074

    Article  PubMed  CAS  Google Scholar 

  24. IARC (1987) IARC monograph on the evaluation of carcinogenicity: an update of IARC monographs 1 to 42. International Agency for Research on Cancer Supplement 7

  25. Hales BE (1982) Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydroxycyclophosphamide, phosphoramide mustard and acrolein. Cancer Res 42:3016–3021

    PubMed  CAS  Google Scholar 

  26. Patel JM (1987) Stimulation of cyclophosphamide-induced pulmonary microsomal lipid peroxidation by oxygen. Toxicology 45:79–91

    Article  PubMed  CAS  Google Scholar 

  27. Tripathi DN, Jena GB (2008) Astaxanthin inhibits cytotoxic and genotoxic effects of cyclophosphamide in mice germ cells. Toxicology 27:96–103

    Article  Google Scholar 

  28. Travis LB, Curtis RE, Glimelius B, Holowaty EJ, Van Leeuwen FE, Lynch CF, Hagenbeek A, Stovall M, Banks PM, Adami J et al (1995) Bladder and kidney cancer following cyclophosphamide therapy for non-Hodgkin’s lymphoma. J Natl Cancer Inst 87:524–530

    Article  PubMed  CAS  Google Scholar 

  29. Sladek N (1971) Metabolism of cyclophosphamide by rat hepatic microsomes. Cancer Res 1:901–908

    Google Scholar 

  30. Sladek NE (1988) Metabolism of oxazaphosphorines. Pharmacol Ther 37:301–355

    Article  PubMed  CAS  Google Scholar 

  31. Roy P, Yu LJ, Crespi CL, Waxman DJ (1999) Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 27:655–666

    PubMed  CAS  Google Scholar 

  32. Bagley C, Bostick F (2001) Clinical pharmacology of cyclophosphamide. Cancer Res 33:226–235

    Google Scholar 

  33. Lin SS, Hung CF, Ho CC, Liu YH, Ho HC, Chung JG (2000) Effects of Ellagic acid by oral administration on N-acetylation and metabolism of 2-aminofluorene in rat brain tissues. Neurochem Res 25(11):1503–1508

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki N, Masamune A, Kikuta K, Watanabe T, Satoh K, Shimosegawa T (2009) Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci 54(4):802–810

    Article  PubMed  CAS  Google Scholar 

  35. Levy L, Harris R (1977) Effect of N-acetyl cysteine on some aspects of cyclophosphamide induced toxicity and immunesupression. Biochem Pharmacol 26(11):1015–1020

    Article  PubMed  CAS  Google Scholar 

  36. Chakraborty P, Sk UH, Murmu N, Das JK, Pal S, Bhattacharya S (2009) Modulation of cyclophosphamide-induced cellular toxicity by diphenylmethyl selenocyanate in vivo, an enzymatic study. J Cancer Mol 4(6):183–189

    CAS  Google Scholar 

  37. Nafees S, Tanveer S, Wani A, Rashid S, Ali N and Sultana S (2011) Modulatory effects of gentisic acid against genotoxicity and hepatotoxicity induced by cyclophosphamide in Swiss albino mice. J Pharm Pharmacol 64(2):259–267

    Google Scholar 

  38. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

    PubMed  CAS  Google Scholar 

  39. Gollapudi B, McFadden LG (1995) Sample size for the estimation of polychromatic to normochromatic erythrocyte ratio in the bone marrow micronucleus test. Mutat Res 347:97–99

    Article  PubMed  CAS  Google Scholar 

  40. Tahir M, Sultana S (2011) Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol Alcohol 46:383–392

    PubMed  CAS  Google Scholar 

  41. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobezene oxide as the hepatotoxic metabolite. Pharmacology 11:151

    Article  PubMed  CAS  Google Scholar 

  42. Carlberg I, Mannervik B (1985) Glutathione level in rat brain. J Biol Chem 250:4480–4575

    Google Scholar 

  43. Mohandas M, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  44. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  45. Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304

    Article  PubMed  CAS  Google Scholar 

  46. Stripe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244:3855–3863

    Google Scholar 

  47. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284

  48. Kornberg A (1955) Lactic dehydrogenase of muscle. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol I. Academic Press, New York, pp 441–443

    Chapter  Google Scholar 

  49. Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  50. Hengstler JG, Hengst A, Fuchs J, Tanner B, Pohl J, Oesch F (1997) Induction of DNA cross links and DNA strand lesions by cyclophosphamide after inactivation by cytochrome P-450 2B1. Mutat Res 373:215–223

    Article  PubMed  CAS  Google Scholar 

  51. Haque R, Bin-Hafeez B, Parvez S, Pandey S, Sayeed I, Ali M, Raisuddin S (2003) Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity. Hum Exp Toxicol 22:473–480

    Article  PubMed  CAS  Google Scholar 

  52. Selvakumar E, Prahalathan C, Mythili Y, Varalakshmi P (2005) Mitigation of oxidative stress in cyclophosphamide-challenged hepatic tissue by dl-alpha-lipoic acid. Mol Cell Biochem 272:179–185

    Article  PubMed  CAS  Google Scholar 

  53. Cooper JA, Merrill WW, Reynolds HY (1986) Cyclophosphamide modulation of bronchoalveolar cellular populations and macrophage oxidative metabolism: possible mechanisms of pulmonary pharmacotoxicity. Am Rev Respir Dis 134:108–114

    PubMed  CAS  Google Scholar 

  54. Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15

    Article  PubMed  CAS  Google Scholar 

  55. Tripathi DN, Jena GB (2009) Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and DNA damage: a study in mice. Chem Biol Interact 180:398–406

    Article  PubMed  CAS  Google Scholar 

  56. Bhatia K, Kaur M, Atif F, Ali M, Rehman H, Rahman S, Raisuddin S (2006) Aqueous extract of Trigonella foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food Chem Toxicol 44:1744–1750

    Article  PubMed  CAS  Google Scholar 

  57. Cagler K, Kinalp C, Arpaci F, Turan M, Saglam K, Ozturk B, Komurcu S, Yavuz, Yenicesu M, Ozet A, Vural A (2002) Cumulative prior dose of cisplatin as a cause of the nephrotoxicity of high-dose chemotherapy followed by autologous stem-cell transplantation. Nephrol Dial Transplant 17:1931–1935

    Article  Google Scholar 

  58. Abrahama P, Indiranib K, Sugumar E (2007) Effect of cyclophosphamide treatment on selected lysosomal enzymes in the kidney of rats. Exp Toxicol Pathol 59:143–149

    Article  Google Scholar 

  59. Salamone MF, Heddle JA (1983) The bone marrow micronucleus assay: rationale for a revised protocol. In: de Serres FJ (ed) Chemical mutagens: principles and methods for their detection, vol 8. Plenum, New York, pp 111–149

  60. Al-Majed AA, Al-Yahya AA, Al-Bekairi AM, Al-Shabanah OA, Qureshi S (2006) Studies on the cytological and biochemical effects of valerian in somatic and germ cells of Swiss albino mice. Food Chem Toxicol 44:1830–1837

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to CCRUM (AYUSH), Ministry of Health and Family Welfare, Govt. of India for providing funds to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwat Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, M.U., Tahir, M., Ali, F. et al. Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol Cell Biochem 365, 119–127 (2012). https://doi.org/10.1007/s11010-012-1250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1250-x

Keywords

Navigation