Skip to main content
Log in

Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boyle JP, Honeycutt AA, Narayan KM (2001) Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the US. Diabetes Care 24:1936–1940

    Article  PubMed  CAS  Google Scholar 

  2. Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70:491–499

    Google Scholar 

  3. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  4. Baynes JW (1991) Role of oxidative stress in development of complications of diabetes mellitus. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  5. Zhang BB, Moller DE (2000) New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol 4:461–467

    Article  PubMed  CAS  Google Scholar 

  6. Grover JK, Vats V, Yadav SP (2002) Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem 241:53–59

    Article  PubMed  CAS  Google Scholar 

  7. Mao CP, Xie ML, Gu ZL (2002) Effects of konjac extract on insulin sensitivity in high fat diet rats. Acta Pharmacol Sin 23:855–859

    PubMed  CAS  Google Scholar 

  8. Hertog MG, Hollman PC, Katan MB, Kromhout D (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 20:21–29

    Article  PubMed  CAS  Google Scholar 

  9. Manach C, Regerat F, Texier O, Agullo G, Demigne C, Remesy C (1996) Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr Res 16:517

    Article  CAS  Google Scholar 

  10. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62:1276–1282

    PubMed  CAS  Google Scholar 

  11. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011

    Article  PubMed  CAS  Google Scholar 

  12. Sa′nchez de Medina F, Vera B, Ga′lvez J, Zarzuelo A (2002) Effect of quercitrin on the early stages of hapten induced colonic inflammation in the rat. Life Sci 70:3097–3108

    Article  Google Scholar 

  13. Taguchi K, Hagiwara Y, Kajiyama K, Suzuki Y (1993) Pharmacological studies of Houttuyniae herba: the anti-inflammatory effect of quercitrin. Yakugaku Zasshi 113:327–333

    PubMed  CAS  Google Scholar 

  14. Ga′lvez J, Crespo ME, Jime’nez J, Sua’rez A, Zarzuelo A (1993) Antidiarrhoeic activity of quercitrin in mice and rats. J Pharm Pharmacol 45:157–159

    Article  Google Scholar 

  15. Gadotti VM, Schmeling LO, Machado C (2005) Antinociceptive action of the extract and the flavonoid quercitrin isolated from Bauhinia microstachya leaves. J Pharm Pharmacol 57:1345–1351

    Article  PubMed  CAS  Google Scholar 

  16. Muzitano MF, Cruz EA, de Almeida AP (2006) Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med 72:81–83

    Article  PubMed  CAS  Google Scholar 

  17. Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  PubMed  CAS  Google Scholar 

  18. Fraga CG, Leibovitz BE, Toppel AL (1988) Lipid peroxidation measured as TBARS in tissue slices. Characterisation and comparison with homogenate and microsome. Free Radic Biol Med 4:155–161

    Article  PubMed  CAS  Google Scholar 

  19. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Ann Biochem 202:384–387

    Article  CAS  Google Scholar 

  20. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  21. Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11

    Google Scholar 

  22. Baker H, Frank O, Angelis B, Feingold S (1951) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

    Google Scholar 

  23. Kakkar P, Das B, Viswanathan PN (1984) Amodified spectrophotometric assay of SOD. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  24. Sinha KA (1972) Colorimetric assay of catalase. Ann Biochem 47:389–394

    Article  CAS  Google Scholar 

  25. Rotruck JT, Pope AL, Ganther HE, Swanson AB (1984) Selenium: biochemical roles as a component of glutathione peroxidase. Science 179:588–590

    Article  Google Scholar 

  26. Horn HD, Burns FH (1978) Assay of glutathione reductase activity. In: HV Bergmeyer (ed) Methods of enzymatic analysis. Academic Press, New York, p 142

  27. Nuraliev IuN, Avezov GA (1992) The efficacy of quercetin in alloxan diabetes. Eksp Klin Farmakol 55(1):42–44

    PubMed  CAS  Google Scholar 

  28. Kobori M, Masumoto S, Akimoto Y, Takahashi Y (2009) Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res 53(7):859–868

    Article  PubMed  CAS  Google Scholar 

  29. Babujanarthanam R, Kavitha P, Sarika S, Rajasekarapandian M (2010) Quercitrin, a bioflavonoid increases glucose utilization and altering the carbohydrate metobolic enzymes in streptozotocin-induced diabetic rat tissues. J Theor Exp Biol 6(3 and 4):225–234

    Google Scholar 

  30. Babujanarthanam R, Kavitha P, Rajasekara Pandian M (2010) Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam Clin Pharmacol 24:357–364

    Article  PubMed  CAS  Google Scholar 

  31. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    Article  PubMed  CAS  Google Scholar 

  32. Ferrali M, Signofrini C, Caciotti B, Sugherini L, Ciccoli D, Giachetti D, Comporti M (1997) Protection against oxidative damage of erythrocyte membranes by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters 416:123–139

    Article  PubMed  CAS  Google Scholar 

  33. Elliott AJ, Scheiber SA, Thomas C, Pardini RS (1992) Inhibition of glutathione reductase by flavonoids. Biochem Pharmacol 44:1603–1608

    Article  PubMed  CAS  Google Scholar 

  34. Kozlov AV, Ostrachovitch EA, Afanas’ev IB (1994) Mechanism of inhibitory effects of chelating drugs on lipid peroxidation in rat brain homogenates. Biochem Pharmacol 47:795–799

    Article  PubMed  CAS  Google Scholar 

  35. Aliciguzel Y, Ozen I, Aslan M, Karayalcin U (2003) Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med 142:172–177

    Article  PubMed  CAS  Google Scholar 

  36. Maritim AC, Sanders RA, Watkins JB III (2003) Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J Nutr Biochem 14:288–294

    Article  PubMed  CAS  Google Scholar 

  37. Santini SA, Marra G, Giardina B (1997) Defective antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 46:1853–1858

    Article  PubMed  CAS  Google Scholar 

  38. Kamalakkannan N, Stanely Mainzen Prince P (2004) Antidiabetic and antioxidant activity of Aegle marmelos extract in streptozotocin induced diabetic rats. Pharm Biol 42:125–130

    Article  Google Scholar 

  39. Yadav P, Sarkar S, Bhatnagar D (1997) Action of Capparis deciduas against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol Res 36:221–228

    Article  PubMed  CAS  Google Scholar 

  40. Gumieniczek A (2005) Effects of repaglinide on oxidative stress in tissues of diabetic rabbits. Diab Res Clin Pract 68:89–95

    Article  CAS  Google Scholar 

  41. Sen CK (1997) Nutritional biochemistry of cellular glutathione. J Nutr Biochem 8:660–672

    Article  CAS  Google Scholar 

  42. Dominguez C, Ruiz E, Gussinye M, Carrascosa A (1998) Oxidative stress at onset and in early stages of type I diabetes in children and adolescents. Diab Care 21:1736–1742

    Article  CAS  Google Scholar 

  43. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants and nutrition. Nutrition 18:872–879

    Article  PubMed  CAS  Google Scholar 

  44. Evelson P, Susemihl C, Villarreal I, Llesuy S, Rodriguez R, Peredo H, Lemberg A, Perazzo J, Filinger E (2005) Hepatic morphological changes and oxidative stress in chronic streptozotocin-diabetic rats. Ann Hepatol 4:115–120

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranganathan Babujanarthanam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babujanarthanam, R., Kavitha, P., Mahadeva Rao, U.S. et al. Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues. Mol Cell Biochem 358, 121–129 (2011). https://doi.org/10.1007/s11010-011-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0927-x

Keywords

Navigation