Skip to main content
Log in

Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress induced by toxicants is known to cause various complications in the liver. Herbal drug such as Liv.52 is found to have hepatoprotective effect. However, the biochemical mechanism involved in the Liv.52 mediated protection against toxicity is not well elucidated using suitable in vitro models. Hence, in the present study, the hepatoprotective effect of Liv.52 against oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was evaluated in order to relate in vitro antioxidant activity with cytoprotective effects. Cytotoxicity was measured by MTT assay. Antioxidant effect of Liv.52 was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing antioxidant power (FRAP) assay, and lipid peroxidation and measurement of non-enzymic and antioxidant enzymes in HepG2 cells exposed to t-BHP over a period of 24 h. The results obtained indicate that t-BHP induced cell damage in HepG2 cells as shown by significant increase in lipid peroxidation as well as decreased levels of reduced glutathione (GSH). Liv.52 significantly decreased toxicity induced by t-BHP in HepG2 cells. Liv.52 was also significantly decreased lipid peroxidation and prevented GSH depletion in HepG2 cells induced by t-BHP. Therefore, Liv.52 appeared to be important for cell survival when exposed to t-BHP. The protective effect of Liv.52 against cell death evoked by t-BHP was probably achieved by preventing intracellular GSH depletion and lipid peroxidation. The results showed protective effect of Liv.52 against oxidative damage induced in HepG2 cells. Hence, taken together, these findings derived from the present study suggest the beneficial effect of Liv.52 in regulating oxidative stress induced in liver by toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiwari AK (2004) Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. Curr Sci 86:1092–1102

    CAS  Google Scholar 

  2. Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Fd Sci Nutr 44:275–295

    Article  CAS  Google Scholar 

  3. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Fr Rad Biol Med 28:1278–1295

    Article  Google Scholar 

  4. Adachi M, Ishii H (2002) Role of mitochondria in alcoholic liver injury. Fr Rad Biol Med 32:487–491

    Article  CAS  Google Scholar 

  5. Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Fd Sci Nutr 44:575–586

    Article  CAS  Google Scholar 

  6. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ (2002) Forum-mechanisms of hepatotoxicity. Toxicol Sci 65:166–176

    Article  CAS  PubMed  Google Scholar 

  7. Mitra SK (2000) Herbal products for liver diseases. Hepatology 31:546–547

    Article  CAS  PubMed  Google Scholar 

  8. Husseini HF, Alavian SM, Heshmat R, Heydari MR, Abolmaali K (2005) The efficacy of Liv.52 on liver cirrhotic patients: a randomized, double blind placebo-controlled first approach. Phytomedicine 12:619–624

    Article  Google Scholar 

  9. Mandal SC, Saraswathi B, Kumar CK, Mohana Lakshmi S, Maiti BC (2000) Protective effect of leaf extract of Ficus hispidea L against paracetamol-induced hepatotoxicity in rats. Phytother Res 14:457–459

    Article  CAS  PubMed  Google Scholar 

  10. Sandhir R, Gill KD (1999) Hepatoprotective effects of Liv. 52 on ethanol induced liver damage in rats. Indian J Expt Biol 37:762–766

    CAS  Google Scholar 

  11. Gopumadhavan S, Jagadeesh S, Chauhan L, Kulkarni RD (1993) Protective effect of Liv.52 on alcohol induced fetotoxicity. Alcohol Clin Exp Res 17:1089–1092

    Article  CAS  PubMed  Google Scholar 

  12. Chauhan BL, Kulkarni RD (1991) Effect of Liv.52 a herbal preparation on absorption and metabolism of ethanol in humans. Eur J Clin Pharmacol 40:189–191

    CAS  PubMed  Google Scholar 

  13. Mitra SK, Varma SR, Godavarthi A, Nandakumar KS (2008) Liv. 52 regulates ethanol induced PPAR γ and TNF α expression in HepG2 cells. Mol Cell Biochem 315:9–15

    Article  CAS  PubMed  Google Scholar 

  14. Stanner SA, Hughes J, Kelly CNM, Buttriss J (2004) A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr 7:407–422

    Article  CAS  PubMed  Google Scholar 

  15. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Fd Sci Nutr 45:287–306

    Article  CAS  Google Scholar 

  16. Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198:315–328

    Article  CAS  PubMed  Google Scholar 

  17. Mersch-Sundermann V, Knasmuller S, Wu XJ, Darroudi F, Kassie F (2004) Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198:329–340

    Article  CAS  PubMed  Google Scholar 

  18. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276

    Article  CAS  Google Scholar 

  20. Chu YH, Chang CL, Hsu HF (2000) Flavonoid content of several vegetables and their antioxidant activity. J Food Agric 80:561–566

    Article  CAS  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  22. Ohakawa H, Ohishi U, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric reaction. Anal Biochem 95:145–149

    Google Scholar 

  23. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  24. Flohe L, Otting O (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  CAS  PubMed  Google Scholar 

  25. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  26. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  27. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  28. Ferguson LR (2001) Role of plant polyphenols in genomic stability. Mutat Res 475(1–2):89–111

    CAS  PubMed  Google Scholar 

  29. Sies H, Summer KH (1975) Hydroperoxide-metabolizing systems in rat liver. Eur J Biochem 57(2):503–512

    Article  CAS  PubMed  Google Scholar 

  30. Bellomo G, Jewel SA, Thor H, Orrenius S (1982) Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butylhydroperoxide. Proc Natl Acad Sci 79:6842–6846

    Article  CAS  PubMed  Google Scholar 

  31. Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR (1985) Organic hydroperoxide-induced lipid-peroxidation and cell-death in isolated hepatocytes. Toxicol Appl Pharmacol 78:473–483

    Article  CAS  PubMed  Google Scholar 

  32. Jewell SA, Di Monte D, Richelmi P, Bellomo G, Orrenius S (1986) tert- butylhydroperoxide-induced toxicity in isolated hepatocytes: contribution of thiol oxidation and lipid peroxidation. J Biochem Toxicol 1:13–22

    Article  CAS  PubMed  Google Scholar 

  33. Nicotera P, McConkey D, Svensson SA, Bellomo G, Orrenius S (1988) Correlation between cytosolic Ca2+ concentration and cytotoxicity in hepatocytes exposed to oxidative stress. Toxicology 52:55–63

    Article  CAS  PubMed  Google Scholar 

  34. Masaki N, Kyle ME, Farber JL (1989) tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arc Biochem Biophys 269:390–399

    Article  CAS  Google Scholar 

  35. Buc-Calderon P, Latour I, Roberfroid M (1991) Biochemical changes in isolated hepatocytes exposed to tert-butyl hydroperoxide. Implications for its cytotoxicity. Cell Biol Toxicol 7:129–143

    Article  CAS  PubMed  Google Scholar 

  36. Thabrew MI, Hughes RD, McFarlane IG (1997) Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J Pharm Pharmacol 49:1132–1135

    CAS  PubMed  Google Scholar 

  37. Kinjo J, Hirakawa T, Tsuchihashi R, Nagao T, Okawa M, Nohara T, Okabe H (2003) Hepatoprotective constituents in plants. 14 Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells. Biol Pharm Bull 26:1357–1360

    Article  CAS  PubMed  Google Scholar 

  38. Alia M, Ramos S, Mateos R, Bravo L, Goya L (2005) Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 19:119–128

    Article  CAS  PubMed  Google Scholar 

  39. Alia M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L (2006) Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol 212:110–118

    Article  CAS  PubMed  Google Scholar 

  40. Lee HU, Bae EA, Han MJ, Kim DH (2005) Hepatoprotective effect of 20(S)- ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol Pharm Bull 28:1992–1994

    Article  CAS  PubMed  Google Scholar 

  41. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-injury. Liver Int 25:1069–1073

    Article  CAS  PubMed  Google Scholar 

  42. Martin C, Martinez R, Navarro R, Ruiz-Sanz JI, Lacort M, Ruiz-Larrea MB (2001) tert-Butyl hydroperoxide-induced lipid signaling in hepatocytes: involvement of glutathione and free radicals. Biochem Pharmacol 62:705–712

    Article  CAS  PubMed  Google Scholar 

  43. Kedderis GL (1996) Biochemical basis of hepatocellular injury. Toxicol Pathol 24:77–83

    Article  CAS  PubMed  Google Scholar 

  44. Castell JV, Gomez-Lechon MJ, Ponsoda X, Bort R (1997) In vitro investigation of the molecular mechanisms of hepatotoxicity. In: Castell JV, Gomez-Lechon MJ (eds) In vitro methods in pharmaceutical research. Academic Press, London, pp 375–410

    Google Scholar 

Download references

Acknowledgment

Authors thank Executive Director for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna S. Nandakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidyashankar, S., K Mitra, S. & Nandakumar, K.S. Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide. Mol Cell Biochem 333, 41–48 (2010). https://doi.org/10.1007/s11010-009-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0202-6

Keywords

Navigation