Skip to main content

Advertisement

Log in

Amelioration of vanadium-induced testicular toxicity and adrenocortical hyperactivity by vitamin E acetate in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vanadium toxicity is a challenging problem to the health professionals and a cutting-edge medical problem. Vanadium has been recognized as industrial hazards that adversely affect human and animal reproductive health. Since testicular function is exquisitely susceptible to reactive-oxygen species, the present study elucidates the possible involvement of oxidative stress in vanadium-induced testicular toxicity and the prophylactic effects of vitamin E acetate against such adverse effects of vanadium. The study also characterizes the effects of vanadium on rat adrenal steroidogenesis and determines the underlying mechanisms of testicular and adrenal interactions in response to vanadium exposure. Significantly reduced sperm count associated with decreased serum testosterone and gonadotropins level in the vanadium-injected group of rats compared to control substantially proves the ongoing damaging effects of vanadium-induced ROS on developing germ cells. This is in turn reflected in the appreciable increase in testicular lipid peroxidation level and decline in the activities of steroidogenic and antioxidant enzymes. However, oral administration of vitamin E acetate could protect testes from the toxic effects of vanadium. Vanadium also results in adrenocortical hyperactivity, as evidenced by the elevated secretion of glucocorticoids, adrenal gland hypertrophy and increased activity of adrenal Δ53β-HSD. However, reversibility of these alterations in adrenocortical activities was vividly reflected after vitamin E acetate supplementation. All these studies reveal that oxidative stress is the major mechanism of health deterioration and that vanadium can act as a stressor metal causing chronic stress effects through excitation of hypothalamo-pituitary-adrenal axis. However antioxidant support by vitamin E acetate may provide significant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

V:

Vanadium

i.p.:

Intraperitoneal

VEA:

Vitamin E acetate

ASg:

Type A spermatogonia

pLSc:

Preleptotene spermatocytes

mPSc:

Mid pachytene spermatocytes

7Sd:

Step 7 spermatids

LH:

Luteinizing hormone

FSH:

Follicle stimulating hormone

HSD:

Hydroxysteroid dehydrogenase

NAD:

Nicotinamide adenine dinucleotide phosphate

LPO:

Lipid peroxidation

TBARS:

Thiobarbituric acid reactive substances

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

CAT:

Catalase

EDTA:

Ethylenediamine tetraacetic acid

BSA:

Bovine serum albumin

HPA:

Hypothalamo-pituitary-adrenal

References

  1. Willsky GR (1990) Vanadium in biosphere. In: Chasteen ND (ed) Vanadium in biological systems. Academic, Boston, MA, pp 1–24

    Google Scholar 

  2. ATSDR (1992) Toxicological profile for vanadium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia

    Google Scholar 

  3. Fawcett JP, Farquhar SJ, Thou T et al (1997) Oral vanadium sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol 80:202–206

    Article  PubMed  CAS  Google Scholar 

  4. Jacksson JK, Min W, Cruz TF et al (1997) A polimer-based drug delivery system for the antineoplasic agent bis (matolato) oxovanadium in mice. Br J Cancer 75:1014–1020

    Google Scholar 

  5. D’Cruz OD, Ghosh P, Uckum FM (1998) Spermicidal activity of metallocene complexes containing vanadium (IV) in humans. Biol Reprod 58:1515–1526

    Article  PubMed  CAS  Google Scholar 

  6. Sakurai H (2005) Therapeutic potential of vanadium in treating diabetes mellitus. Clin Calcium 15:49–57

    PubMed  CAS  Google Scholar 

  7. Goc A (2006) Biological activity of vanadium compounds. Cent Eur J Biol 1:314–332

    Article  CAS  Google Scholar 

  8. Nriagu JO (1998) History, occurrence, and uses of vanadium. In: Nriagu JO (ed) Vanadium in the environment, Wiley, New York, pp 1–24

    Google Scholar 

  9. Domingo JL (1996) Vanadium: a review of the reproductive and developmental toxicity. Reprod Toxicol 10:175–182

    Article  PubMed  CAS  Google Scholar 

  10. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  11. Cortizo AM, Bruzzone L, Molinuevo S et al (2000) A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89–99

    Article  PubMed  CAS  Google Scholar 

  12. Bartsch H, Nair J (2000) Ultrasensitive and specific detection methods for exocyclic DNA adducts: markers for lipid peroxidation and oxidative stress. Toxicology 153:105–114

    Article  PubMed  CAS  Google Scholar 

  13. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biol Med 8:583–599

    Article  CAS  Google Scholar 

  14. Aragón MA, Ayala ME, Fortoul TI et al (2005) Vanadium induced ultrastructural changes and apoptosis in male germ cells. Reprod Toxicol 20:127–134

    Article  PubMed  CAS  Google Scholar 

  15. Aragón MA, Altamirano-Lozano M (2001) Sperm and testicular modifications induced by subcronic treatments with vanadium (IV) in CD-1 mice. Reprod Toxicol 15:145–151

    Article  PubMed  Google Scholar 

  16. Llobet JM, Colomina MT, Siruent JJ et al (1993) Reproductive toxicity evaluation of vanadium in male mice. Toxicology 80:199–206

    Article  PubMed  CAS  Google Scholar 

  17. Altamirano-Lozano MA, Alvarez-Barrera L, Basurto-Alcantara M et al (1996) Reprotoxic and genotoxic studies of vanadium pentoxide in male mice. Teratog Carcinog Mutag 16:7–17

    Article  CAS  Google Scholar 

  18. Dieber-Rotheneder M, Puhl H, Waeg G et al (1991) Effect of oral supplementation with D-α-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res 32:1325–1332

    PubMed  CAS  Google Scholar 

  19. Chandra AK, Ghosh D, Mukhopadhyay S et al (2004) Effect of bamboo shoot, Bambusa arundinacea (Retz.) Willd. on thyroid status under conditions of varying iodine intake in rats. Indian J Exp Biol 42:781–786

    PubMed  Google Scholar 

  20. Llobet JM, Domingo JL (1984) Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23:227–231

    Article  PubMed  CAS  Google Scholar 

  21. Chandra AK, Ghosh R, Chatterjee A et al (2007) Effects of vanadate on male rat reproductive tract histology, oxidative stress markers and androgenic enzyme activities. J Inorg Biochem 101:944–956

    Article  PubMed  CAS  Google Scholar 

  22. Leblond PC, Clermont Y (1952) Definition of the stages of the seminiferous epithelium in the rat. Ann NY Acad Sci 55:548–573

    Article  PubMed  CAS  Google Scholar 

  23. Majumder GC, Biswas R (1979) Evidence for the occurrence of ecto (adenosine triphosphatase) in rat epididymal spermatozoa. Biochem J 183:737–743

    PubMed  CAS  Google Scholar 

  24. Wyrobek AJ, Bruce WR (1975) Chemical induction of sperm abnormalities in mice. Proc Natl Acad Sci USA 72:44

    Article  Google Scholar 

  25. Moudgal NR, Madhawa Raj HG (1974) Pituitary gonadotropin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic Press, New York, pp 57–85

    Google Scholar 

  26. Greenwood FC, Hunter WM, Glover JS (1963) The preparation of 131I-labelled human growth hormone of high specific activity. Biochem J 89:114–123

    PubMed  CAS  Google Scholar 

  27. Talalay P (1962) Hydroxy steroid dehydrogenase. In: Colowick SP (ed) Methods in enzymology. Academic Press, New York, pp 513–532

    Google Scholar 

  28. Jarabak J, Adams JA, Williams-Ashman HG et al (1962) Purification of a 17β hydroxysteroid dehydrogenase of human placenta and studies on its transhydrogenase function. J Biol Chem 237:345–357

    PubMed  CAS  Google Scholar 

  29. Glick D, Redlich DV, Levine S (1964) Fluorometric determination of corticosterone and cortisol in 0.02–0.05 millilitres of plasma or submilligram sample of adrenal tissue. Endocrinol 74:653–655

    CAS  Google Scholar 

  30. Silber RH (1966) Fluorometric analysis of corticoids. In: Glick D (ed) Methods of biochemical analysis. Interscienc Publishers, New York, pp 63–78

    Chapter  Google Scholar 

  31. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  32. Paoletti F, Mocali A (1990) Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Methods Enzymol 186:209–220

    PubMed  CAS  Google Scholar 

  33. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis, vol 2. Academic Press, New York, pp 673–678

    Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement from phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  35. Fisher RA, Yates R (1974) Statistical tables for biological, agricultural and medical research. Longman Group, London

    Google Scholar 

  36. Dehghani GA, Mansoorzadeh S, Omrani GH et al (2002) Effects of vanadyl sulphate on spermatogenesis in male rats. Iran J Med Sci 27:95–96

    Google Scholar 

  37. Steinberger E (1971) Hormonal control of mammalian spermatogenesis. Physiol Rev 51:1–22

    CAS  Google Scholar 

  38. Sharpe R (1994) Regulation of spermatogenesis. In: Knobil ENJ (ed) The physiology of reproduction. Raven Press, New York, pp 1363–1434

    Google Scholar 

  39. Meistrich ML (1989) Evaluation of reproductive toxicity by testicular sperm head counts. J Am Coll Toxicol 8:551–567

    CAS  Google Scholar 

  40. D’Agostino JB, Valadka RJ, Schwartz NB (1990) Differential effect of in vitro glucocorticoids on LH and FSH secretion: dependence of sex of pituitary donor. Endocrinology 127:891

    PubMed  CAS  Google Scholar 

  41. Bombino TH, Hsueh AJW (1989) Direct effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology 125:209–216

    Article  Google Scholar 

  42. Kitay JI (1963) Effects of testosterone on pituitary corticotrophin and adrenal steroid secretion in male and female rats. Acta Endocrinol 42:253

    Google Scholar 

  43. Peltola V, Huhtaniemi I, Metsa-Ketela T et al (1995) Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology 137:105–112

    Article  Google Scholar 

  44. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  45. Mates JM, Perez-Gomez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  CAS  Google Scholar 

  46. Cortizo AM, Bruzzone L, Molinuevo S et al (2000) A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89–99

    Article  PubMed  CAS  Google Scholar 

  47. Younes M, Strubelt O (1991) Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxidation. Toxicology 66:63–74

    Article  PubMed  CAS  Google Scholar 

  48. Zini A, Schlegel PN (2003) Effect of hormonal manipulation on mRNA expression of antioxidant enzymes in the rat testis. J Urol 169:767–771

    Article  PubMed  CAS  Google Scholar 

  49. Shi XL, Dalal NS (1993) Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton Mechanism. Arch Biochem Biophys 307:336–341

    Article  PubMed  CAS  Google Scholar 

  50. Senthil Kumar J, Banudevi S, Sharmila M et al (2004) Effects of vitamin C and E on PCB (Aroclor 1254) induced oxidative stress, androgen binding protein and lactate in rat sertoli cells. Reprod Toxicol 19:201–208

    Article  PubMed  CAS  Google Scholar 

  51. Bagchi D, Hassoun EA, Bagchi M et al (1993) Protective effects of antioxidants against endrin-induced hepatic lipid peroxidation, DNA damage, and excretion of urinary lipid metabolites. Free Radic Biol Med 15:217–222

    Article  PubMed  CAS  Google Scholar 

  52. Vuchetich PJ, Bagchi D, Bagchi M et al (1996) Naphthalene-induced oxidative stress in rats and the protective effects of vitamin E succinate. Free Radic Biol Med 21:577–590

    Article  PubMed  CAS  Google Scholar 

  53. Palamanda JR, Kehrer JP (1993) Involvement of vitamin E and protein thiols in the inhibition of microsomal lipid peroxidation by glutathione. Lipids 28:427–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Syed N. Kabir, Scientist, Cell Biology & Physiology Division, Indian Institute of Chemical Biology (IICB), Kolkata, India for his help in conducting RIA of FSH and LH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar K. Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, A.K., Ghosh, R., Chatterjee, A. et al. Amelioration of vanadium-induced testicular toxicity and adrenocortical hyperactivity by vitamin E acetate in rats. Mol Cell Biochem 306, 189–200 (2007). https://doi.org/10.1007/s11010-007-9569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9569-4

Keywords

Navigation