Skip to main content
Log in

Background Risk Models and Stepwise Portfolio Construction

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Assuming the multiplicative background risk model, which has been a popular model due to its practical applicability and technical tractability, we develop a general framework for analyzing portfolio performance based on its subportfolios. Since the performance of subportfolios is easier to assess, the herein developed stepwise portfolio construction (SPC) provides a powerful alternative to a number of traditional portfolio construction methods. Within this framework, we discuss a number of multivariate risk models that appear in the actuarial and financial literature. We provide numerical and graphical examples that illustrate the SPC technique and facilitate our understanding of the herein developed general results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. (9th printing.) Dover, New York

    MATH  Google Scholar 

  • Arnold BC (1983) Pareto distributions. International Co-operative Publishing House, Fairland

    MATH  Google Scholar 

  • Asimit V, Badescu A, Tsanakas A (2013a) Optimal risk transfers in insurance groups. Eur Actuar J 3:159–190

    Article  MathSciNet  MATH  Google Scholar 

  • Asimit AV, Furman E., Tang Q, Vernic R (2011) Asymptotics for risk capital allocations based on conditional tail expectation. Insurance: Math Econ 49:310–324

    MathSciNet  MATH  Google Scholar 

  • Asimit AV, Vernic R, Zitikis R (2013b) Evaluating risk measures and capital allocations based on multi-losses driven by a heavy-tailed background risk: the multivariate Pareto-II model. Risks 1:14–33

    Article  Google Scholar 

  • Bai Z, Hui Y, Wong WK, Zitikis R (2012) Prospect performance evaluation: making a case for a non-asymptotic UMPU test. J Financ Economet 10:703–732

    Article  Google Scholar 

  • Bebbington M, Lai CD, Zitikis R (2008) Reduction in mean residual life in the presence of a constant competing risk. Appl Stoch Models Business Indust 24:51–63

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett CJ, Zitikis R (2014) Estimation of optimal portfolio weights under parameter uncertainty and user-specified constraints: a perturbation method. J Statist Theory Pract 8(3, special issue on “advances in interdisciplinary statistics and combinatorics”):423–438

    Article  MathSciNet  Google Scholar 

  • Brazauskas V, Jones BL, Zitikis R (2015) Trends in disguise. Ann Actuar Sci 9:58–71

    Article  Google Scholar 

  • Brazauskas V, Kleefeld A (2011) Folded- and log-folded-t distributions as models for insurance loss data. Scand Actuar J 2011:59–74

    Article  MathSciNet  MATH  Google Scholar 

  • Brazauskas V, Kleefeld A (2014) Authors’ reply to “letter to the editor: regarding folded models and the paper by Brazauskas and Kleefeld (2011)” by Scollnik. Scand Actuar J 2014:753–757

  • Buch A, Dorfleitner G, Wimmer M (2011) Risk capital allocation for RORAC optimization. J Bank Financ 35:3001–3009

    Article  Google Scholar 

  • Busse M, Dacorogna M, Kratz M (2014) The impact of systemic risk on the diversification benefits of a risk portfolio. Risks 2:260–276

    Article  Google Scholar 

  • Cannata F, Quagliariello M (2011) Basel III and beyond. Risk Books, London

    Google Scholar 

  • Chan-Lau JA (2013) Systemic risk assessment and oversight. Risk Books, London

    Google Scholar 

  • Cruz M (2009) The solvency II handbook. Risk Books, London

    Google Scholar 

  • Durante F, Fernández-Sánchez J, Pappadà R (2015) Copulas, diagonals, and tail dependence. Fuzzy Sets Syst 264:22–41

  • Embrechts P, Puccetti G (2010) Risk aggregation. In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copulas theory and its applications. Springer, Berlin, pp 111–126

    Chapter  Google Scholar 

  • Embrechts P, Puccetti G, Rüschendorf L (2013) Model uncertainty and VaR aggregation. J Bank Financ 37:2750–2764

    Article  Google Scholar 

  • European Commission (2009) Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the Taking-up and Pursuit of the Business of Insurance and Reinsurance (Solvency II). Official Journal of the European Union L335

  • European Commission (2010) QIS5 Technical Specifications. Available at the address: http://ec.europa.eu/internal_market/insurance/docs/solvency/qis5/201007/technical_specifications_en.pdf

  • Ferrari R, Migliavacca A (2014) Tsunami surfing. Torino, Anteprima

    Google Scholar 

  • Franke G, Schlesinger H, Stapleton RC (2006) Multiplicative background risk. Manag Sci 52:146–153

    Article  MATH  Google Scholar 

  • Franke G, Schlesinger H, Stapleton RC (2011) Risk taking with additive and multiplicative background risks. J Econ Theory 146:1547–1568

    Article  MathSciNet  MATH  Google Scholar 

  • Fraser J, Simkins B (2010) Enterprise risk management: today’s leading research and best practices for tomorrow’s executives. Hoboken, Wiley

    Google Scholar 

  • Furman E, Zitikis R (2008a) Weighted premium calculation principles. Insurance: Math Econ 42:459–465

    MathSciNet  MATH  Google Scholar 

  • Furman E, Zitikis R (2008b) Weighted risk capital allocations. Insurance: Math Econ 43:263–269

    MathSciNet  MATH  Google Scholar 

  • Furman E, Zitikis R (2009) Weighted pricing functionals with applications to insurance: an overview. North Amer Actuarl J 13:483–496

    Article  MathSciNet  Google Scholar 

  • Guillén M, Sarabia JM, Prieto F (2013) Simple risk measure calculations for sums of positive random variables. Insurance: Math Econ 53:273–280

    MathSciNet  MATH  Google Scholar 

  • Hashorva E, Ji L (2014) Random shifting and scaling of insurance. Risks 2:277–288

    Article  Google Scholar 

  • Jaworski P, Durante F, Härdle W (2013) Copulae in mathematical and quantitative finance. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jaworski P, Durante F, Härdle W, Rychlik T (2010) Copulas theory and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jørgensen B (1997) The theory of dispersion models. Chapman and Hall, New York

    MATH  Google Scholar 

  • Louisot JP, Ketcham CH (2014) ERM – enterprise risk management: issues and cases. Wiley, Chichester

    Google Scholar 

  • Mainik G, Embrechts P (2013) Diversification in heavy-tailed portfolios: properties and pitfalls. Ann Actuar Sci 7:26–45

    Article  Google Scholar 

  • Marasovic B, Babic Z (2011) Two-step multi-criteria model for selecting optimal portfolio. Int J Prod Econ 134:58–66

    Article  Google Scholar 

  • McNeil AJ (2013) Enterprise risk management (editorial). Ann Actuar Sci 7:1–2

    Article  Google Scholar 

  • McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Merz M, Wüthrich MV (2014) Demand of insurance under the cost-of-capital premium calculation principle. Risks 2:226–248

    Article  Google Scholar 

  • Meucci A (2007) Risk and asset allocation. (Third Printing). Springer, Berlin

    Google Scholar 

  • Michaud RO, Michaud RO (2008) Efficient asset management: a practical guide to stock portfolio optimization and asset allocation. (Second edition). Oxford University Press, New York

    Google Scholar 

  • Nešlehová J, Embrechts P, Chavez-Demoulin V (2006) Infinite mean models and the LDA for operational risk. J Oper Risk 1:3–25

    Google Scholar 

  • Olson DL, Wu D (2010) Enterprise risk management models. Springer, New York

    Book  MATH  Google Scholar 

  • Ozdemir B, Miu P (2013) Adapting to basel III and the financial crisis: re-engineering capital, business mix and performance management practices. Risk Books, London

    Google Scholar 

  • Patil GP (2002) Weighted distributions. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of Environmetrics, vol 4. Wiley, Chichester, pp 2369–2377

  • Patil GP, Ord KJ (1976) On size-biased sampling and related form-invariant weighted distributions. Sankhyā Ser B 38:48–61

    MathSciNet  MATH  Google Scholar 

  • Patil GP, Rao CR (1978) Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34:179–189

    Article  MathSciNet  MATH  Google Scholar 

  • Sandström A (2010) Handbook of solvency for actuaries and risk managers: theory and practice. Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Schilling RL, Song R, Vondracek Z (2010) Bernstein functions. Theory and applications. De Gruyter, Berlin

    MATH  Google Scholar 

  • Segal S (2011) Corporate value of enterprise risk management: the next step in business management. Hoboken, Wiley

    Google Scholar 

  • Sendov HS, Zitikis R (2014) The shape of the Borwein-Affleck-Girgensohn function generated by completely monotone and Bernstein functions. J Optim Theory Appl 160:67–89

    Article  MathSciNet  MATH  Google Scholar 

  • Sendov HS, Shan S (2015) New representation theorems for completely monotone and Bernstein functions with convexity properties on their measures. J Theor Probab (to appear)

  • Seshadri V (1993) The inverse gaussian distribution: a case study in exponential families. Oxford University Press, New York

    Google Scholar 

  • Sawyer N (2012) Basel III: addressing the challenges of regulatory reform. Risk Books, London

    Google Scholar 

  • Scollnik DPM (2014) Letter to the editor: regarding folded models and the paper by Brazauskas and Kleefeld (2011). Scand Actuar J 2014:278–281

    Article  MathSciNet  Google Scholar 

  • Stefanovits D, Schubiger U, Wüthrich MV (2014) Model risk in portfolio optimization. Risks 2:315–348

    Article  Google Scholar 

  • Tsanakas A (2008) Risk measurement in the presence of background risk. Insurance: Math Econ 42:520–528

    MathSciNet  MATH  Google Scholar 

  • Tsetlin I, Winkler RL (2005) Risky choices and correlated background risk. Manag Sci 51:1336–1345

    Article  Google Scholar 

  • Vernic R (2011) Tail conditional expectation for the multivariate Pareto distribution of the second kind: another approach. Methodol Comput Appl Probab 13:121–137

    Article  MathSciNet  MATH  Google Scholar 

  • Widder DV (1945) The Laplace transform. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Yau S, Kwon RH, Rogers JS, Wu D (2011) Financial and operational decisions in the electricity sector: contract portfolio optimization with the conditional value-at-risk criterion. Int J Prod Econ 134:67–77

    Article  Google Scholar 

  • You Y, Li X (2014) Optimal capital allocations to interdependent actuarial risks. Insurance: Math Econ 57:104–113

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca Vernic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asimit, A.V., Vernic, R. & Zitikis, R. Background Risk Models and Stepwise Portfolio Construction. Methodol Comput Appl Probab 18, 805–827 (2016). https://doi.org/10.1007/s11009-015-9458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-015-9458-3

Keywords

Mathematics Subject Classifications (2010)

Navigation