Skip to main content
Log in

Pizzetti Formulae for Stiefel Manifolds and Applications

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Pizzetti’s formula explicitly shows the equivalence of the rotation invariant integration over a sphere and the action of rotation invariant differential operators. We generalize this idea to the integrals over real, complex, and quaternion Stiefel manifolds in a unifying way. In particular, we propose a new way to calculate group integrals and try to uncover some algebraic structures which manifest themselves for some well-known cases like the Harish-Chandra integral. We apply a particular case of our formula to an Itzykson–Zuber integral for the coset \({{{\rm SO}(4)/[{\rm SO}(2)\times {\rm SO}(2)]}}\). This integral naturally appears in the calculation of the two-point correlation function in the transition of the statistics of the Poisson ensemble and the Gaussian orthogonal ensemble in random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, G., Baik, J., Di Francesco, P. (eds.): The oxford handbook of random matrix theory, 1st edn. Oxford University Press, Oxford (2011)

  2. Altland, A., Zirnbauer, M.R.: Novel symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997). arXiv:cond-mat/9602137

  3. Berezin, F.A.: Introduction to superanalysis, 1st edn, D. Reidel Publishing Company, Dordrecht (1987)

  4. Berezin F.A., Karpelevich F.I.: Zonal spherical functions and Laplace operators on some symmetric spaces. Doklady Akad. Nauk SSSR 118, 9 (1958)

    MathSciNet  MATH  Google Scholar 

  5. Bergère, M., Eynard, B.: Some properties of angular integrals. J. Phys. A 42, 265201 (2009). arXiv:0805.4482 [math-ph]

  6. Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773 (2006). arXiv:math-ph/0402073

  7. Coulembier, K.: The orthosymplectic superalgebra in harmonic analysis. J. Lie Theory 23, 55 (2013). arXiv:1208.3827 [math.RT]

  8. De Bie, H., Eelbode, D., Sommen, F.: Spherical harmonics and integration in superspace II. J. Phys. A Math. Theor. 42, 245204 (2009). arXiv:0905.2092 [math-ph]

  9. Forrester, P.J.: Log-Gases and random matrices, 1st edn. Princeton University Press, Princeton (2010)

  10. Gorin, T.: Integrals of monomials over the orthogonal group. J. Math. Phys. 43, 3342 (2002). arXiv:math-ph/0112012

  11. Guhr, T., Kohler, H.: Recursive construction for a class of radial functions. I. Ordinary space. J. Math. Phys. 43, 2707 (2002).arXiv:math-ph/0011007

  12. Guhr, T., Kohler, H.: Recursive Construction for a class of radial functions II—Superspace. J. Math. Phys. 43, 2741 (2002). arXiv:math-ph/0012047

  13. Guhr, T., Müller-Groeling, A., Weidenmüller, H.A.: Random-matrix theories in quantum physics: Common concepts. Phys. Rep. 299,189 (1998)

  14. Haake, F.: Quantum signatures of chaos, 2nd edn. Springer Verlag, Berlin (2001)

  15. Harish-Chandra.: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87 (1957)

  16. Huckleberry, A., Puettmann, A., Zirnbauer, M.R.: Haar expectations of ratios of random characteristic polynomials. (2007). arXiv:0709.1215 [math-ph]

  17. Howe R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ingham A.E.: An integral which occurs in statistics. Proc. Camb. Phil. Soc. 29, 271 (1933)

    Article  ADS  MATH  Google Scholar 

  19. Itzykson C., Zuber J.B.: The planar approximation. J. Math. Phys. 21, 411 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ivanov, D.: The supersymmetric technique for random-matrix ensembles with zero eigenvalues. J. Math. Phys. 43, 126 (2002). arXiv:cond-mat/0103137

  21. Kieburg, M., Verbaarschot, J.J.M., Zafeiropoulos, S.: Dirac spectra of 2-dimensional QCD-like theories. (2014). arXiv:1405.0433 [hep-lat]

  22. Kieburg, M., Grönqvist, J., Guhr, T.: Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case. J. Phys. A 42, 275205 (2009). arXiv:0905.3253 [math-ph]

  23. Kohler, H.: Group integrals in chaotic quantum systems, Phd thesis, University Heidelberg. (2009). http://archiv.ub.uni-heidelberg.de/volltextserver/1406/

  24. Leutwyler H., Smilga A.: Spectrum of Dirac operator and role of winding number in QCD. Phys. Rev. D 46, 5607 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  25. Littelmann, P., Sommers, H.-J., Zirnbauer, M.R.: Superbosonization of invariant random matrix ensembles. Math. Phys. 283, 343 (2008). arXiv:0707.2929 [math-ph]

  26. Louck, J.D.: Unitary symmetry and combinatorics. World Scientific Publication Co. Pte. Ltd., London (2008)

  27. Lysik G.: Mean-value properties of real analytic functions. Arch. Math. (Basel) 98, 61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mehta, M.L.: Random matrices, 3rd edn. Academic, New York (2004)

  29. Muirhead R.J.: Aspects of multivariate statistical theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  30. Okounkov, A., Olshanski, G.: Shifted jack polynomials, binomial formula, and applications. Math. Res. Lett. 4, 69 (1997). arXiv:q-alg/9608020

  31. Pizzetti P.: Sulla media dei valori che una funzione dei punti dello spazio assume alla superlicie di una sfera. Rend. Reale Accod. Lincei 18, 182 (1909)

    MATH  Google Scholar 

  32. Schlittgen, B., Wettig, T.: Generalizations of some integrals over the unitary group. J. Phys. A 36, 3195 (2003). arXiv:math-ph/0209030

  33. Siegel C.L.: über die analytische Theorie der quadratischen Formen. Ann. Math. 36, 527 (1935)

    Article  MATH  Google Scholar 

  34. Shatashvili S.L.: Correlation functions in the Itzykson-Zuber model. Commun. Math. Phys. 154(2), 421–432 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Shuryak, E.V., Verbaarschot, J.J.M.: Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nucl. Phys. A 560, 306 (1993). arXiv:hep-th/9212088

  36. Sommers, H.-J.: Superbosonization. Act. Phys. Pol. B 38, 1001 (2007). arXiv:0710.5375 [cond-mat.stat-mech]

  37. Verbaarschot, J.J.M.: The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way. Phys. Rev. Lett. 72, 2531 (1994). arXiv:hep-th/9401059

  38. Verbaarschot, J.J.M., Wettig, T.: Random matrix theory and chiral symmetry in QCD. Ann. Rev. Nucl. Part. Sci. 50, 343 (2000). arXiv:hep-ph/0003017

  39. Verbaarschot, J.J.M., Zahed, I.: Random matrix theory and QCD3. Phys. Rev. Lett. 73, 2288 (1994). arXiv:hep-th/9405005

  40. Zirnbauer, M.R.: Riemannian symmetric superspaces and their origin in random matrix theory. J. Math. Phys. 37, 4986 (1996). arXiv:math-ph/9808012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Coulembier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulembier, K., Kieburg, M. Pizzetti Formulae for Stiefel Manifolds and Applications. Lett Math Phys 105, 1333–1376 (2015). https://doi.org/10.1007/s11005-015-0774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0774-x

Mathematics Subject Classification

Keywords

Navigation