Skip to main content
Log in

The Magic Square of Lie Groups: The 2 × 2 Case

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A unified treatment of the 2 × 2 analog of the Freudenthal–Tits magic square of Lie groups is given, providing an explicit representation in terms of matrix groups over composition algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freudenthal H.: Lie groups in the foundations of geometry. Adv. Math. 1, 145–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tits J.: Algèbres Alternatives, Algèbres de Jordan et algèbres de Lie Exceptionnelles. Indag. Math. 28, 223–237 (1966)

    MathSciNet  Google Scholar 

  3. Vinberg E.B.: A construction of exceptional Lie groups (Russian). Tr. Semin. Vektorn. Tensorn. Anal. 13, 7–9 (1966)

    Google Scholar 

  4. Barton C.H., Sudbery A.: Magic squares and matrix models of Lie algebras. Adv. Math. 180, 596–647 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fairlie D.B., Manogue C.A.: Lorentz invariance and the composite string. Phys. Rev. D 34, 1832–1834 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  6. Schray J.: The general classical solution of the superparticle. Class. Quant. Grav. 13, 27–38 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Baez, J., Huerta, J.: Division algebras and supersymmetry I. In: Doran, R.S., Friedman, G., Rosenberg, J. (eds) Superstrings, geometry, topology, and C*-algebras, pp. 65–80. American Mathematical Society, Providence (2010). arXiv:0909.0551

  8. Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras. J. Math. Phys. 34, 3746–3767 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Manogue C.A., Dray T.: Dimensional reduction. Mod. Phys. Lett. A 14, 99–103 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Dray, T., Manogue, C.A.: Quaternionic spin. In: Rafał, A., Bertfried, F. (eds) Clifford algebras and mathematical physics, pp. 21–37. Birkhäuser, Boston (2000). arXiv:hep-th/9910010

  11. Dray T., Manogue C.A.: Octonions and the structure of E 6. Comment. Math. Univ. Carolin. 51, 193–207 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Manogue C.A., Dray T.: Octonions, E 6, and particle physics. J. Phys. Conf. Ser. 254, 012005 (2010)

    Article  ADS  Google Scholar 

  13. Wangberg, A., Dray T.: E 6, the group: the structure of \({{\rm SL}(3,{\mathbb{O}})}\). J. Algebra Appl. (to appear). arXiv:1212.3182

  14. Wangberg A., Dray T.: Discovering real Lie subalgebras of \({\mathfrak{e}_6}\) using Cartan decompositions. J. Math. Phys. 54, 081703 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  15. Wangberg, A.: The structure of E 6. PhD thesis, Oregon State University (2007). arXiv:0711.3447

  16. Dray T., Manogue C.A., Wilson R.A.: A symplectic representation of E 7. Comment. Math. Univ. Carolin 55, 387–399 (2014). arXiv:1311.0341

  17. Wilson R.A.: A quaternionic construction of E 7. Proc. Am. Math. Soc. 142, 867–880 (2014)

    Article  MATH  Google Scholar 

  18. Kincaid, J.J.: Division algebra representations of SO(4, 2). Master’s thesis, Oregon State University (2012). Available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682

  19. Kincaid, J., Dray, T.: Division algebra representations of SO(4, 2). Mod. Phys. Lett. A 29, 1450128 (2014). arXiv:1312.7391

  20. Albert A.A.: Quadratic forms permitting composition. Ann. Math. (2) 43, 161–177 (1942)

    Article  Google Scholar 

  21. Hurwitz, A.: Über die Komposition der quadratischen Formen. Math. Ann. 88, 1–25 (1923). Available at http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=GDZPPN002269074

  22. Schafer, R.D.: An introduction to nonassociative algebras. Academic Press, New York (1966) (reprinted by Dover Publications 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tevian Dray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dray, T., Huerta, J. & Kincaid, J. The Magic Square of Lie Groups: The 2 × 2 Case. Lett Math Phys 104, 1445–1468 (2014). https://doi.org/10.1007/s11005-014-0720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0720-3

Mathematics Subject Classification

Keywords

Navigation