Skip to main content
Log in

Quantum Torus Symmetry of the KP, KdV and BKP Hierarchies

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct the quantum torus symmetry of the KP hierarchy and further derive the quantum torus constraint on the tau function of the KP hierarchy. That means we give a nice representation of the quantum torus Lie algebra in the KP system by acting on its tau function. Comparing to the W ∞ symmetry, this quantum torus symmetry has a nice algebraic structure with double indices. Further by reduction, we also construct the quantum torus symmetries of the KdV and BKP hierarchies and further derive the quantum torus constraints on their tau functions. These quantum torus constraints might have applications in the quantum field theory, supersymmetric gauge theory and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickey L.A.: Soliton Equations and Hamiltonian Systems, 2nd edn. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  2. Orlov A.Yu., Schulman E.I.: Additional symmetries of integrable equations and conformal algebra representation. Lett. Math. Phys. 12, 171–179 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. He J.S., Tian K.L., Forester A., Ma W.X.: Additional symmetries and string equation of the CKP hierarchy. Lett. Math. Phys. 81, 119–134 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Tian K.L., He J.S., Cheng J.P., Cheng Y.: Additional symmetries of constrained CKP and BKP hierarchies. Sci. China Math. 54, 257–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li M.H., Li C.Z. et al.: Virasoro type algebraic structure hidden in the constrained discrete Kadomtsev–Petviashvili hierarchy. J. Math. Phys. 54, 043512 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Block R.: On torsion-free abelian groups and Lie algebras. Proc. Am. Math. Soc. 9, 613–620 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dokovic D., Zhao K.: Derivations, isomorphisms and second cohomology of generalized Block algebras. Algebra Colloq. 3, 245–272 (1996)

    MathSciNet  Google Scholar 

  8. Su Y.: Quasifinite representations of a Lie algebra of Block type. J. Algebra 276, 117–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, M.R., et al.: W 1+∞ 3-algebra and KP hierarchy. arXiv:1309.4627

  10. Kemmoku R., Saito S.: Discretization of Virasoro algebra. Phys. Lett. B 319, 471–477 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  11. Mas J., Seco M.: The algebra of q-pseudodifferential symbols and the \({q-W_{KP}^{(n)}}\) algebra. J. Math. Phys. 37, 6510 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Li C.Z., He J.S., Su Y.C.: Block type symmetry of bigraded Toda hierarchy. J. Math. Phys. 53, 013517 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  13. Li C.Z., He J.S., Wu K., Cheng Y.: Tau function and Hirota bilinear equations for the extended bigraded Toda hierarchy. J. Math. Phys. 51, 043514 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Li C.Z.: Solutions of bigraded Toda hierarchy. J. Phys. A 44, 255201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Li C.Z., He J.S.: Dispersionless bigraded Toda hierarchy and its additional symmetry. Rev. Math. Phys. 24, 1230003 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, C.Z., He, J.S.: Block algebra in two-component BKP and D type Drinfeld–Sokolov hierarchies. J. Math. Phys. 54, 113501 (2013). arXiv:1210.6498

  17. Fairlie D.B., Fletcher P., Zachos C.K.: Trigonometric structure constants for new infinite-dimensional algebras. Phys. Lett. B 218, 203 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Maeda T., Nakatsu T., Takasaki K., Tamakoshi T.: Free fermion and Seiberg–Witten differential in random plane partitions. Nucl. Phys. B 715, 275 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Maeda T., Nakatsu T.: Amoebas and instantons. Int. J. Mod. Phys. A 22, 937 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Nakatsu T., Takasaki K.: Melting crystal, quantum Torus and Toda hierarchy. Commun. Math. Phys. 285, 445–468 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Dickey L.A.: Lectures on classical W-algebras. Acta Appl. Math. 47, 243–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)

    Article  MathSciNet  Google Scholar 

  23. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Douglas M.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Lett. B 238, 176–180 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  25. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation groups for soliton equations. In: Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981), 39–119. World Scientific Publishing, Singapore (1983)

  26. Takasaki K.: Quasi-classical limit of BKP hierarchy and W-infinity symmetries. Lett. Math. Phys. 28, 177–185 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Tu M.H.: On the BKP hierarchy: additional symmetries, Fay identity and Adler-Shiota-van Moerbeke formula. Lett. Math. Phys. 81, 93–105 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Aoyama S., Kodama Y.: A generalized Sato equation and the W ∞ algebra. Phys. Lett. B 278, 56–62 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  29. Adler M., Shiota T., Moerbeke P.: From the w ∞-algebra to its central extension: a τ-function approach. Phys. Lett. A 194, 33–43 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  30. Adler M., Shiota T., Moerbeke P.: A Lax representation for the vertex operator and the central extension. Commun. Math. Phys. 171, 547–588 (1995)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, J. Quantum Torus Symmetry of the KP, KdV and BKP Hierarchies. Lett Math Phys 104, 1407–1423 (2014). https://doi.org/10.1007/s11005-014-0716-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0716-z

Mathematics Subject Classification

Keywords

Navigation