Skip to main content
Log in

T-Duality for Orientifolds and Twisted KR-Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

D-brane charges in orientifold string theories are classified by the KR-theory of Atiyah. However, this is assuming that all O-planes have the same sign. When there are O-planes of different signs, physics demands a “KR-theory with a sign choice” which up until now has not been studied by mathematicians (with the unique exception of Moutuou, who did not have a specific application in mind). We give a definition of this theory and compute it for orientifold theories compactified on S 1 and T 2. We also explain how and why additional “twisting” is implemented. We show that our results satisfy all possible T-duality relationships for orientifold string theories on elliptic curves, which will be studied further in subsequent work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1974)

  2. Anderson D.W.: The real K-theory of classifying spaces. Proc. Nat. Acad. Sci. USA 51(4), 634–636 (1964)

    Article  MATH  ADS  Google Scholar 

  3. Atiyah M.F.: K-theory and reality. Q. J. Math. Oxf. Ser. 2(17), 367–386 (1966)

    Article  MathSciNet  Google Scholar 

  4. Atiyah, M., Segal, G.: Twisted K-theory. Ukr. Mat. Visn. 1(3), 287–330 (2004). arXiv:math/0407054

  5. Atiyah, M., Segal, G.: Twisted K-theory and cohomology. In: Inspired by S.S. Chern. Nankai Tracts Math., vol. 11, pp. 5–43. World Scientific Publishing, Hackensack (2006).arXiv:math/0510674

  6. Bates, B., Doran, C., Schalm, K.: Crosscaps in Gepner models and the moduli space of T 2 orientifolds. Adv. Theor. Math. Phys. 11(5), 839–912 (2007).arXiv:hep-th/0612228

  7. Bergman, O., Gimon, E.G., Horava, P.: Brane transfer operations and T-duality of non-BPS states. J. High Energy Phys. 1999(04), 010 (1999).arXiv:hep-th/9902160

  8. Boersema, J.L.: Real C *-algebras, united K-theory, and the K ünneth formula. K-Theory 26(4), 345–402 (2002). arXiv:math/0208068

  9. Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249(2), 383–415 (2004). arXiv:hep-th/0306062

  10. Braun, V., Schäfer-Nameki, S.: D-brane charges in Gepner models. J. Math. Phys. 47(9), 092304 (2006). arXiv:hep-th/0511100

  11. Bunke, U., Rumpf, P., Schick, T.: The topology of T-duality for T n-bundles. Rev. Math. Phys. 18, 1103–1154 (2006). arXiv:math/0501487

  12. Bunke, U., Schick, T.: On the topology of T-duality. Rev. Math. Phys. 17, 77–112 (2005). arXiv:math/0405132

  13. Distler, J., Freed, D.S., Moore, G.W.: Orientifold précis. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proceedings of Symposia in Pure Mathematics, vol. 83, pp. 159–172. American Mathematical Society, Providence, RI (2011). arXiv:0906.0795

  14. Donovan, P., Karoubi, M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 38, 5–25 (1970). http://www.numdam.org/item?id=PMIHES_1970__38__5_0

  15. Doran, C., Mendez-Diez, S., Rosenberg, J.: String theory on elliptic curve orientifolds and KR-theory. Commun. Math. Phys. (2014). arXiv:1402.4885

  16. Dupont J.L.: Symplectic bundles and KR-theory. Math. Scand. 24, 27–30 (1969)

    MathSciNet  MATH  Google Scholar 

  17. Evans, D.E., Gannon, T.: Modular invariants and twisted equivariant K-theory II: Dynkin diagram symmetries. J. K-Theory 8(2), 273–330 (2013). arXiv:1012.1634

  18. Fujii, M.: K O -groups of projective spaces. Osaka J. Math. 4, 141–149 (1967)

  19. Gao, D., Hori, K.: On the structure of the Chan–Paton factors for D-branes in type II orientifolds (2010, preprint). arXiv:1004.3972

  20. Green P.S.: A cohomology theory based upon self-conjugacies of complex vector bundles. Bull. Am. Math. Soc. 70, 522–524 (1964)

    Article  MATH  Google Scholar 

  21. Gukov, S.: K-theory, reality, and orientifolds. Commun. Math. Phys. 210, 621–639 (2000). arXiv:hep-th/9901042

  22. Hori, K.: D-branes, T-duality, and index theory. Adv. Theor. Math. Phys. 3, 281–342 (1999). hep-th/9902102

  23. Karoubi, M.: K-theory. An introduction. Grundlehren der Mathematischen Wissenschaften, Band 226. Springer, Berlin (1978)

  24. Karoubi, M.: Twisted K-theory—old and new. In: K-Theory and Noncommutative Geometry. EMS Series of Congress Reports, pp. 117–149. European Mathematical Society, Zürich (2008). arXiv:math/0701789

  25. Karoubi, M., Weibel, C.: Algebraic and real K-theory of real varieties. Topology 42(4), 715–742 (2003). arXiv:math/0509412

  26. Keurentjes, A.: Orientifolds and twisted boundary conditions. Nucl. Phys. B 589, 440 (2000). arXiv:hep-th/0004073

  27. Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

  28. Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology. II: the high-dimensional case and the T-duality group. Adv. Theor. Math. Phys. 10, 123–158 (2006). arXiv:hep-th/0508084

  29. Minasian, R., Moore, G.W.: K-theory and Ramond–Ramond charge. J. High Energy Phys. 1997(11), 002 (1997). arXiv:hep-th/9710230

  30. Moutuou, E.M.: Twistings of KR for Real groupoids (2011). arXiv:1110.6836

  31. Moutuou, E.M.: Twisted groupoid KR-theory. PhD thesis, Université de Lorraine (2012). http://www.theses.fr/2012LORR0042 .

  32. Moutuou, E.M.: Graded Brauer groups of a groupoid with involution. J. Funct. Anal. 266(5), 2689–2739 (2014). arXiv:1202.2057

  33. Olsen, K., Szabo, R.J.: Constructing D-branes from K-theory. Adv. Theor. Math. Phys. 3, 889–1025 (1999). arXiv:hep-th/9907140

  34. Pedrini, C., Weibel, C.: The higher K-theory of real curves. K-Theory 27(1), 1–31 (2002)

  35. Rosenberg, J.: Continuous-trace algebras from the bundle theoretic point of view. J. Aust. Math. Soc. Ser. A 47(3), 368–381 (1989)

  36. Sanderson B.J.: Immersions and embeddings of projective spaces. Proc. Lond. Math. Soc (3) 14, 137–153 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  37. Witten, E.: D-branes and K-theory. J. High Energy Phys. 1998(12), 019 (1998). arXiv:hep-th/9810188

  38. Witten, E.: Toroidal compactification without vector structure. J. High Energy Phys. 1998(02), 006 (1998). arXiv:hep-th/9712028

  39. Witten, E.: Overview of K-theory applied to strings. In: Strings 2000. Proceedings of the International Superstrings Conference, Ann Arbor, MI, vol. 16, pp. 693–706 (2001). arXiv:hep-th/0007175

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rosenberg.

Additional information

JR partially supported by NSF Grant DMS-1206159.

CD and SMD partially supported by the NSERC of Canada, the Pacific Institute for the Mathematical Sciences, and the McCalla Professorship at the University of Alberta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doran, C., Méndez-Diez, S. & Rosenberg, J. T-Duality for Orientifolds and Twisted KR-Theory. Lett Math Phys 104, 1333–1364 (2014). https://doi.org/10.1007/s11005-014-0715-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0715-0

Mathematics Subject Classification

Keywords

Navigation