Skip to main content
Log in

Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

A Bayesian linear inversion methodology based on Gaussian mixture models and its application to geophysical inverse problems are presented in this paper. The proposed inverse method is based on a Bayesian approach under the assumptions of a Gaussian mixture random field for the prior model and a Gaussian linear likelihood function. The model for the latent discrete variable is defined to be a stationary first-order Markov chain. In this approach, a recursive exact solution to an approximation of the posterior distribution of the inverse problem is proposed. A Markov chain Monte Carlo algorithm can be used to efficiently simulate realizations from the correct posterior model. Two inversion studies based on real well log data are presented, and the main results are the posterior distributions of the reservoir properties of interest, the corresponding predictions and prediction intervals, and a set of conditional realizations. The first application is a seismic inversion study for the prediction of lithological facies, P- and S-impedance, where an improvement of 30% in the root-mean-square error of the predictions compared to the traditional Gaussian inversion is obtained. The second application is a rock physics inversion study for the prediction of lithological facies, porosity, and clay volume, where predictions slightly improve compared to the Gaussian inversion approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W.H. Freeman and Co, New York

    Google Scholar 

  • Amaliksen I (2014) Bayesian inversion of time-lapse seismic data using bimodal prior models. Masters thesis, Norwegian University of Science and Technology

  • Asli M, Marcotte D, Chouteau M (2000) Direct inversion of gravity data by cokriging. In: Proceeding of international congress of geostatistics, pp 64–73

  • Aster R, Borchers B, Thurber CH (2011) Parameter estimation and inverse problems. Elsevier, Amsterdam

    Google Scholar 

  • Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41(3):164–171

    Article  Google Scholar 

  • Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198

    Article  Google Scholar 

  • Buland A, Kolbjørnsen O (2012) Bayesian inversion of CSEM and magnetotelluric data. Geophysics 77(1):E33–E42

    Article  Google Scholar 

  • Buland A, Kolbjørnsen O, Hauge R, Skjaeveland Ø, Duffaut K (2012) Bayesian lithology and fluid prediction from seismic prestack data. Geophysics 73(3):C13–C21

    Article  Google Scholar 

  • Cappe O, Moulines E, Ryden T (2005) Inference in hidden Markov models. Springer, Heidelberg

    Google Scholar 

  • Connolly PA, Hughes MJ (2016) Stochastic inversion by matching to large numbers of pseudo-wells. Geophysics 81(2):M7–M22

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • Doyen PM (1988) Porosity from seismic data: a geostatistical approach. Geophysics 53(10):1263–1275

    Article  Google Scholar 

  • Doyen P (2007) Seismic reservoir characterization. EAGE Publications, Moscow

    Google Scholar 

  • Doyen PM, Den Boer LD (1996) Bayesian sequential Gaussian simulation of lithology with non-linear data. US Patent 5,539,704

  • Dubreuil-Boisclair C, Gloaguen E, Bellefleur G, Marcotte D (2012) Non-Gaussian gas hydrate grade simulation at the Mallik site, Mackenzie Delta, Canada. Mar Pet Geol 35(1):20–27

    Article  Google Scholar 

  • Dvorkin J, Gutierrez M, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dymarski P (ed) (2011) Hidden Markov models. Theory and applications. InTech, Rijeka

    Google Scholar 

  • Eidsvik J, Mukerji T, Switzer P (2004) Estimation of geological attributes from a well log, an application of hidden Markov chains. Math Geol 36(3):379–397

    Article  Google Scholar 

  • Elfeki A, Dekking M (2001) Markov chain model for subsurface characterization: theory and applications. Math Geol 33(5):569–589

    Article  Google Scholar 

  • Fjeldstad TM (2015) Bayesian inversion and inference of categorical Markov models with likelihood functions including dependence and convolution. Masters thesis, Norwegian University of Science and Technology

  • Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models: modeling and applications to random processes. Springer, Heidelberg

    Google Scholar 

  • Gloaguen E, Marcotte D, Chouteau M (2004) A new constrained velocity tomography algorithm using geostatistical simulation. In: Proceedings of the tenth international conference on ground penetrating radar, vol 1. IEEE, pp 75–78

  • Gloaguen E, Marcotte D, Chouteau M, Perroud H (2005) Borehole radar velocity inversion using cokriging and cosimulation. J Appl Geophys 57(4):242–259

    Article  Google Scholar 

  • Grana D (2016) Bayesian linearized rock-physics inversion. Geophysics 81(6):D625–D641

    Article  Google Scholar 

  • Grana D, Della Rossa E (2010) Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75(3):O21–037

    Article  Google Scholar 

  • Gunning J, Glinsky M (2007) Detection of reservoir quality using Bayesian seismic inversion. Geophysics 72(3):R37–R39

    Article  Google Scholar 

  • Hansen TM, Journel AG, Tarantola A, Mosegaard K (2006) Linear inverse Gaussian theory and geostatistics. Geophysics 71:R101–R111

    Article  Google Scholar 

  • Hasselblad V (1966) Estimation of parameters for a mixture of normal distributions. Technometrics 8(3):431–444

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1996) Discriminant analysis by Gaussian mixtures. J R Stat Soc Ser B 58(1):155–176

    Google Scholar 

  • Herrmann FJ, Erlangga YA, Lin TT (2009) Compressive simultaneous full-waveform simulation. Geophysics 74(4):A35–A40

    Article  Google Scholar 

  • Krumbein WC, Dacey MF (1969) Markov chains and embedded Markov chains in geology. Math Geol 1(1):79–96

    Article  Google Scholar 

  • Larsen AL, Ulvmoen M, Omre H, Buland A (2006) Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics 71(5):R69–R78

    Article  Google Scholar 

  • Lindberg DV, Grana D (2015) Petro-elastic log-facies classification using the expectation maximization algorithm and hidden Markov models. Math Geosci 47(6):719–752

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100:12431–12447

    Article  Google Scholar 

  • Pratt RG (1999) Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics 64(3):888–901

    Article  Google Scholar 

  • Rimstad K, Omre H (2010) Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics 75(4):R93–R108

    Article  Google Scholar 

  • Rimstad K, Omre H (2013) Approximate posterior distributions for convolutional two-level hidden Markov models. Comput Stat Data Anal 58:187–200

    Article  Google Scholar 

  • Rimstad K, Avseth P, Omre H (2012) Hierarchical Bayesian lithology/fluid prediction: a North Sea case study. Geophysics 77(2):B69–B85

    Article  Google Scholar 

  • Sadegh M, Vrugt JA (2013) Toward diagnostic model calibration and evaluation: approximate Bayesian computation. Water Resour Res 49(7):4335–4345

    Article  Google Scholar 

  • Sauvageau M, Gloaguen E, Claprood M, Lefebvre R, Bêche M (2014) Multimodal reservoir porosity simulation: an application to a tight oil reservoir. J Appl Geophys 107:71–79

    Article  Google Scholar 

  • Scales JA, Tenorio L (2001) Prior information and uncertainty in inverse problems. Geophysics 66:389–397

    Article  Google Scholar 

  • Sen MK, Stoffa PL (1996) Bayesian inference, Gibbs sampler and uncertainty estimation in geophysical inversion. Geophys Prospect 44:313–350

    Article  Google Scholar 

  • Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sung H (2004) Gaussian mixture regression and classification. Ph.D. thesis, Rice University

  • Tarantola A (2005) Inverse problem theory. SIAM, Philadelphia

    Google Scholar 

  • Ulrych TJ, Sacchi MD, Woodbury A (2001) A Bayes tour of inversion: a tutorial. Geophysics 66:55–69

    Article  Google Scholar 

  • Ulvmoen M, Omre H (2010) Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1, Methodology. Geophysics 75(2):R21–R35

    Article  Google Scholar 

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):WCC1–WCC26

    Article  Google Scholar 

  • Zhu H, Li S, Fomel S, Stadler G, Ghattas O (2016) A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration. Geophysics 81(5):R307–R323

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the University of Wyoming and the URE-initiative at NTNU for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Grana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grana, D., Fjeldstad, T. & Omre, H. Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems. Math Geosci 49, 493–515 (2017). https://doi.org/10.1007/s11004-016-9671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-016-9671-9

Keywords

Navigation