Skip to main content

Advertisement

Log in

Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates \((\phi ,\lambda ,h)\) to Cartesian Coordinates (XYZ)

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The standard forward transformation equation plays a major role in coordinate transformation between global and local datums. Thus, it is a prerequisite step in the forward conversion of geodetic coordinates into cartesian coordinates in coordinate transformation from global to local datum and vice versa. Numerous studies have been carried out on converting cartesian coordinates to geodetic coordinates (reverse procedure) through the application of iterative, approximate, closed form, vector-based and computational intelligence algorithms. However, based on literature covered pertaining to this study, it was realized that the existing researches do not fully address the issue of applying and testing alternative techniques in the case of the forward conversion. Hence, the purpose of this present study was to explore the coordinate conversion performance of two different artificial neural network approaches (backpropagation artificial neural network (BPANN) and radial basis function neural network (RBFNN)) and multiple linear regression (MLR). The statistical findings revealed that the BPANN, RBFNN and MLR offered satisfactory prediction of cartesian coordinates. However, the RBFNN compared to BPANN and MLR showed better stability and more accurate prediction results. Furthermore, in terms of maximum three-dimensional position error, the RBFNN attained 0.004 m while 0.011 and 0.627 m were achieved, respectively, by MLR and BPANN. By virtue of the success achieved in this study, the main conclusion drawn here is that RBFNN provides a promising alternative in the forward conversion of geodetic coordinates into cartesian coordinates. Therefore, the capability of artificial neural network as a powerful tool for solving majority of function approximation problems in geodesy has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ali MH, Abustan I (2014) A new novel index for evaluating model performance. J Nat Resour Dev 4:1–9

    Google Scholar 

  • Andrei OC (2006) 3D affine coordinate transformations. Masters of Science Thesis in Geodesy No. 3091 TRITA-GIT EX 06-004, School of Architecture and the Built Environment, Royal Institute of Technology (KTH), 100 44 Stockholm

  • Arbib MA (2003) The handbook of brain theory and neural networks, 2nd edn. A Bradford Book, The MIT Press, Massachusetts

    Google Scholar 

  • Banarjee T, Singh SB, Srivastava RK (2011) Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos Res 99:505–517

    Article  Google Scholar 

  • Bao H, Zhao D, Fu Z, Zhu J, Gao Z (2011) Application of genetic-algorithm improved BP neural network in automated deformation monitoring. In: 7th International conference on natural computation, Shanghai-China IEEE. doi:10.1109/ICNC.2011.6022149

  • Cai G, Chen BM, Lee TH (2011) Unmanned rotorcraft systems. Advances in industrial control. Springer, London. doi:10.1007/978-0-85729-635-1_2

  • Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247

    Article  Google Scholar 

  • Dawod GM, Mirza NM, Al-Ghamdi AK (2010) Simple precise coordinate transformations for geomatics applications in Makkah metropolitan area, Saudi-Arabia. Bridging the gap between cultures FIG working week, Marrakech Morocco, pp 18-22

  • Deyfrus G (2005) Neural networks: methodology and applications. Springer, Berlin

    Google Scholar 

  • Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inf 35(5–6):352–359

    Article  Google Scholar 

  • Du S, Zhang J, Deng Z, Li J (2014a) A new approach of geological disasters forecasting using meteorological factors based on genetic algorithm optimized BP neural network. Elektronika IR Elektrotechnika 20(4):57–62

    Article  Google Scholar 

  • Du S, Zhang J, Deng Z, Li J (2014b) A neural network based intelligent method for mine slope surface deformation prediction considering the meteorological factors. TELKOMNIKA Indones J Elect Eng 12(4):2882–2889

    Google Scholar 

  • Featherstone WE (1997) A comparison of existing co-ordinate transformation models and parameters in Australia. Cartogr 26(1):13–26

    Article  Google Scholar 

  • Feltens J (2007) Vector methods to compute azimuth, elevation, ellipsoidal normal, and the cartesian (X, Y, Z) to geodetic (\(\varphi \), \(\lambda \), h) transformation. J Geod 82(8):493–504

    Article  Google Scholar 

  • Feltens J (2009) Vector method to compute the cartesian (\(X\), \(Y\), \(Z\)) to geodetic (\(\varphi \), \(\lambda \), \(h\)) transformation on a triaxial ellipsoid. J Geod 83(2):129–137

    Article  Google Scholar 

  • Fok SH, Iz HB (2003) A comparative analysis of the performance of iterative and non-iterative solutions to the cartesian to geodetic coordinate transformation. J Geospatial Eng 5(2):61–74

    Google Scholar 

  • Fox D (1981) Judging air quality model performance. Bull Am Meteor Soc 62:599–609. doi:10.1175/1520-0477(1981)062%3c0599:JAQMP%3e2.0.CO;2

  • Fu B, Liu X (2014) Application of artificial neural network in GPS height transformation. Appl Mech Mater 501–504:2162–2165

    Article  Google Scholar 

  • Gao CY, Cui XM, Hong XQ (2014) Study on the applications of neural networks for processing deformation monitoring data. Appl Mech Mater 501–504:2149–2153

    Article  Google Scholar 

  • Ge Y, Yuan Y, Jia N (2013) More efficient methods among commonly used robust estimation methods for GPS coordinate transformation. Surv Rev 45(330):229–234

    Article  Google Scholar 

  • Gerdan GP, Deakin RE (1999) Transforming cartesian coordinates (x, y, z) to geographical coordinates (\(\varphi \), \(\lambda \), h). Aust Surv 44(1):55–63

    Google Scholar 

  • Ghorbani MA, Khatibi R, FazeliFard MH, Naghipour L, Makarynskyy O (2015) Short-term wind speed predictions with machine learning techniques. Meteorol Atmos Phys. doi:10.1007/s00703-015-0398-9

    Google Scholar 

  • Gullu M (2010) Coordinate transformation by radial basis function neural network. Sci Res Essays 5(20):3141–3146

    Google Scholar 

  • Gullu M, Yilmaz M, Yilmaz I, Turgut B (2011) Datum transformation by artificial neural networks for geographic information systems applications. In: International symposium on environmental protection and planning: geographic information systems (GIS) and remote sensing (RS) applications (ISEPP), Izmir-Turkey, pp 13-19

  • Gurney K (2005) An introduction to neural networks. Taylor and Francis, London

    Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feed forward techniques with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  • Hajian A, Ardestani EV, Lucas C (2011) Depth estimation of gravity anomalies using Hopfield neural networks. J Earth Space Phys 37(2):1–9

    Google Scholar 

  • Hamid RS, Mohammad RS (2013) Neural network and least squares method (ANN-LS) for depth estimation of subsurface cavities case studies: Gardaneh Rokh Tunnel. Iran J Appl Sci Agric 8(3):164–171

    Google Scholar 

  • Hartman EJ, Keeler JD, Kowalski JM (1990) Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput 2(2):210–215

    Article  Google Scholar 

  • He-Sheng W (2006) Precise GPS orbit determination and prediction using H\(_{\infty }\) neural network. J Chin Inst Eng 29(2):211–219

    Article  Google Scholar 

  • Hoar GJ (1982) Satellite surveying. Magnavox Advanced Products and Systems Company, 2829 Maricopa Street. Torrance, California

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Hu WS, Zheng DY, Nie WF (2014) Research on methods of regional ionospheric delay correction based on neural network technology. Surv Rev 46(336):167–174

    Article  Google Scholar 

  • Ismail S, Shabri A, Samsudin R (2012) A hybrid model of self organizing maps and least square support vector machine for river flow forecasting. Hydrol Earth Syst Sci 16:4417–4433

    Article  Google Scholar 

  • Kavzoglu T, Saka MH (2005) Modelling local GPS/levelling geoid undulations using artificial neural networks. J Geod 78:520–527. doi:10.1007/s00190-004-0420-3

    Article  Google Scholar 

  • Kecman V (2001) Learning and soft computing: a bradford book. The MIT Press, Massachusetts

    Google Scholar 

  • Konaté AA, Pan H, Khan N, Ziggah YY (2015) Prediction of porosity in crystalline rocks using artificial neural networks: an example from the Chinese continental scientific drilling main hole. Stud Geophys Geod 59(1):113–136

    Article  Google Scholar 

  • Krause P, Boyle DP, Base F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  • Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • Lei W, Qi X (2010) The application of BP neural network in GPS elevation fitting. In: International conference on intelligent computation technology and automation, Changsha-China, IEEE. doi:10.1109/ICICTA.2010.162

  • Leick A (2004) GPS satellite surveying. Wiley, Hoboken, NJ

    Google Scholar 

  • Li X, Zhou J, Guo R (2014) High-precision orbit prediction and error control techniques for COMPASS navigation satellite. Chin Sci Bull 59(23):2841–2849

    Article  Google Scholar 

  • Liao DC, Wang QJ, Zhou YH, Liao XH, Huang CL (2012) Long-term prediction of the earth orientation parameters by the artificial neural network technique. J Geodyn 62:87–92

    Article  Google Scholar 

  • Ligas M, Banasik P (2011) Conversion between cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. Geod Cartogr 60(2):145–159

    Google Scholar 

  • Lin LS, Wang YJ (2006) A study on cadastral coordinate transformation using artificial neural network. In: Proceedings of the 27th Asian conference on remote sensing, Ulaanbaatar, Mongolia

  • Liu S, Li J, Wang S (2011) A hybrid gps height conversion approach considering of neural network and topographic correction. In: International conference on computer science and network technology, China IEEE. doi:10.1109/ICCSNT.2011.6182386

  • Lourakis MIA (2005) A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Technical Report, Institute of Computer Science, Foundation for Research and Technology-Hellas

  • Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA

  • Mihalache RM (2012) Coordinate transformation for integrating map information in the new geocentric European system using artificial neural networks. GeoCAD pp 1-9

  • Muller VA, Hemond FH (2013) Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta 117:112–118

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    Google Scholar 

  • Odutola AC, Beiping W, Ziggah YY (2013) Testing simple regression model for coordinate transformation by comparing its predictive result for two regions. Acad Res Int 4(6):540–550

    Google Scholar 

  • Oil and Gas Producers (OGP) (2012) Coordinate conversions and transformations including formulas. Geomatics Guidance Note Number 7, part-2, p 5

  • Pan G, Zhou Y, Sun H, Guo W (2015) Linear observation based total least squares. Surv Rev 47(340):18–27

    Article  Google Scholar 

  • Pantazis G, Eleni-Georgia A (2013) The use of artificial neural networks in predicting vertical displacements of structures. Int J Appl Sci Technol 3(5):1–7

    Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial basis function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  • Pikridas C, Fotiou A, Katsougiannopoulos S, Rossikopoulos D (2011) Estimation and evaluation of GPS geoid heights using an artificial neural network model. Appl Geomat 3:183–187. doi:10.1007/s12518-011-0052-2

    Article  Google Scholar 

  • Schofield W (2001) Engineering surveying: theory and examination problems for students, 5th edn. Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford OX2 8DP, UK

  • Schuh H, Ulrich M, Egger D, Muller J, Schwegmann W (2002) Prediction of earth orientation parameters by artificial neural networks. J Geod 76:247–258

    Article  Google Scholar 

  • Shu C, Li F (2010) An iterative algorithm to compute geodetic coordinates. Comput Geosci 36:1145–1149

    Article  Google Scholar 

  • Sickle JV (2010) Basic GIS coordinates, 2nd edn. CRC Press, Taylor and Francis Group, New York

    Book  Google Scholar 

  • Solomon M (2013), Determination of transformation parameters for Montserrado County, Republic of Liberia. Masters Thesis, Faculty of Civil and Geomatic Engineering, College of Engineering, KNUST, Kumasi, Ghana

  • Sorkhabi OM (2015) Geoid determination based on log sigmoid function of artificial neural networks: a case study, Iran. J Artif Intell Electr Eng 3(12):18–24

    Google Scholar 

  • Stopar B, Ambrožič T, Kuhar M, Turk G (2006) GPS-derived geoid using artificial neural network and least squares collocation. Surv Rev 38(300):513–524

    Article  Google Scholar 

  • Tieding L, Shijian Z, Xijiang C (2010) A number of issues about converting GPS height by BP neural network. In: International conference on biomedical engineering and computer science (ICBECS), Wuhan-China, IEEE doi:10.1109/ICBECS.2010.5462426

  • Tierra A, Dalazoana R, De Freitas S (2008) Using an artificial neural network to improve the transformation of coordinates between classical geodetic reference frames. Comput Geosci 34:181–189

    Article  Google Scholar 

  • Tierra AR, De Freitas SRC (2005) Artificial neural network: a powerful tool for predicting gravity anomaly from sparse data. Gravity, Geoid and Space Missions, International Association of Geodesy Symposia. Springer, Berlin Heidelberg DA. doi:10.1007/3-540-26932-0_36

  • Tierra AR, De Freitas SRC, Guevara PM (2009) Using an artificial neural network to transformation of coordinates from PSAD56 to SIRGAS95. Geodetic reference frames, international association of geodesy symposia. Springer 134:173-178

  • Tierra A, Romero R (2014) Planes coordinates transformation between PSAD56 to SIRGAS using a multilayer artificial neural network. Geod Cartogr 63(2):199–209

    Google Scholar 

  • Turgut B (2010) A back-propagation artificial neural network approach for three-dimensional coordinate transformation. Sci Res Essays 5(21):3330–3335

    Google Scholar 

  • Vanicek P, Steeves RR (1996) Transformation of coordinates between two horizontal geodetic datums. J Geod 70:740–745

    Article  Google Scholar 

  • Veronez MR, De Souza GC, Matsuoka TM, Reinhardt A, Da Silva RM (2011) Regional mapping of the geoid using GNSS (GPS) measurements and an artificial neural network. Remote Sensing 3:668–683. doi:10.3390/rs3040668

    Article  Google Scholar 

  • Veronez MR, Thum BA, De Souza GC (2006) A new method for obtaining geoidal undulations through artificial neural networks. In: 7th International symposium on spatial accuracy assessment in natural resources and environmental sciences, pp 306-316

  • Wang X (2009) Application of artificial neural network to predict short-term capital flow. In: International conference on research challenges in computer science. doi:10.1109/ICRCCS.2009.39

  • Wu LC, Tang X, Zhang S (2012) The application of genetic neural network in the GPS height transformation. In: IEEE 4th international conference on computational and information sciences, Chongqing-China. doi:10.1109/ICCIS.2012.317

  • Wu P, Yi X, Jin K (2012) A study on Chinese output of timber prediction model based on PSO-SVM. Adv Inf Sci Serv Sci (AISS) 4(2):227–233. doi:10.4156/AISS.vol4.issue2.28

    Google Scholar 

  • Yakubu I, Kumi-Boateng B (2011) Control position fix using single frequency global positioning system receiver technique-a case study. Res J Environ Earth Sci 3(1):32–37

    Google Scholar 

  • Yegnanarayana B (2005) Artificial neural networks. Prentice-Hall of India Private Limited, Delhi

    Google Scholar 

  • Yilmaz I, Gullu M (2012) Georeferencing of historical maps using back propagation artificial neural network. Exp Tech 36(5):15–19

    Article  Google Scholar 

  • Yilmaz M (2013) Artificial neural networks pruning approach for geodetic velocity field determination. Bol Ciênc Geod 19(4):558–573

    Article  Google Scholar 

  • Yilmaz M, Gullu M (2014) A comparative study for the estimation of geodetic point velocity by artificial neural networks. J Earth Syst Sci 123(4):791–808

    Article  Google Scholar 

  • Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead stream flow forecasting. J Hydrol Eng 15(4):275–283

    Article  Google Scholar 

  • Yu L, Danning Z, Cai H (2015) Prediction of length-of-day-using extreme learning machine. Geod Geodyn 6(2):151–159

    Article  Google Scholar 

  • Zaletnyik P (2004) Coordinate transformation with neural networks and with polynomials in Hungary. In: International symposium on modern technologies, education and professional practice in geodesy and related fields, Sofia, Bulgaria, pp 471-479

  • Zeng HE (2014) Geodetic datum transformation and inverse transformation. Appl Mech Mater 501–504:2154–2157

    Article  Google Scholar 

  • Zeng H (2015) Analytical algorithm of weighted 3D datum transformation using the constraint of orthonormal matrix. Earth Planets Space 67:1–10

    Article  Google Scholar 

  • Zhu J (1994) Conversion of earth-centered earth-fixed coordinates to geodetic coordinates. IEEE Trans Aerosp Electron Syst 30(3):957–961

    Article  Google Scholar 

  • Ziggah YY, Hu Y, Odutola AC (2012) Regression models for 2-dimensional cartesian coordinates prediction: a case study at University of Mines and Technology (UMaT), Tarkwa-Ghana. Int J Comput Sci Eng Surv 3(6):61–79

    Article  Google Scholar 

  • Ziggah YY, Youjian H, Odutola AC, Fan DL (2013) Determination of GPS coordinate transformation parameters of geodetic data between reference datums: a case study of ghana geodetic reference network. Int J Eng Sci Res Technol 2(4):2277–9655

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their profound gratitude to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Youjian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziggah, Y.Y., Youjian, H., Yu, X. et al. Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates \((\phi ,\lambda ,h)\) to Cartesian Coordinates (XYZ). Math Geosci 48, 687–721 (2016). https://doi.org/10.1007/s11004-016-9638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-016-9638-x

Keywords

Navigation