Skip to main content
Log in

Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Looking at kriging problems with huge numbers of estimation points and measurements, computational power and storage capacities often pose heavy limitations to the maximum manageable problem size. In the past, a list of FFT-based algorithms for matrix operations have been developed. They allow extremely fast convolution, superposition and inversion of covariance matrices under certain conditions. If adequately used in kriging problems, these algorithms lead to drastic speedup and reductions in storage requirements without changing the kriging estimator. However, they require second-order stationary covariance functions, estimation on regular grids, and the measurements must also form a regular grid. In this study, we show how to alleviate these rather heavy and many times unrealistic restrictions. Stationarity can be generalized to intrinsicity and beyond, if decomposing kriging problems into the sum of a stationary problem and a formally decoupled regression task. We use universal kriging, because it covers arbitrary forms of unknown drift and all cases of generalized covariance functions. Even more general, we use an extension to uncertain rather than unknown drift coefficients. The sampling locations may now be irregular, but must form a subset of the estimation grid. Finally, we present asymptotically exact but fast approximations to the estimation variance and point out application to conditional simulation, cokriging and sequential kriging. The drastic gain in computational and storage efficiency is demonstrated in test cases. Especially high-resolution and data-rich fields such as rainfall interpolation from radar measurements or seismic or other geophysical inversion can benefit from these improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababou R, Bagtzoglou AC, Wood EF (1994) On the condition number of covariance matrices in kriging, estimation, and simulation of random fields. Math Geol 26(1):99–133

    Article  Google Scholar 

  • Barnett S (1990) Matrices methods and applications. Oxford applied mathematics and computing science series. Clarendon, Oxford

    Google Scholar 

  • Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Bound Elem 27:405–422. doi:10.1016/S0955–7997(02)00152–2

    Article  Google Scholar 

  • Chan RH, Ng MK (1996) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38(3):427–482

    Article  Google Scholar 

  • Cirpka OA, Nowak W (2003) Dispersion on kriged hydraulic conductivity fields. Water Resour Res. doi:10.1029/2001WR000598

    Google Scholar 

  • Cirpka OA, Nowak W (2004) First-order variance of travel time in non-stationary formations. Water Resour Res 40:W03507. doi:10.1029/2003WR002851

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • Davis PJ (1979) Circulant matrices. Pure and applied mathematics. Wiley, New York

    Google Scholar 

  • Davis MW, Culhane PG (1984) Contouring very large data sets using kriging. In: Verly G (eds) Geostatistics for natural resources characterization, Part 2. Reidel, Dordrecht

    Google Scholar 

  • Davis MW, Grivet C (1984) Kriging in a global neighborhood. Math Geol 16(3):249–265

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1989) A stability analysis of the geostatistical approach to aquifer transmissivity identification. Stoch Hydrol Hydraul 3:293–316

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour Res 29(8):2861–2869

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1996) A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations conditioned on direct and indirect measurements. Water Resour Res 32(6):1643–1652

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18(4):1088–1107

    Article  Google Scholar 

  • Duijndam AJW, Schonewille MA (1999) Nonuniform fast Fourier transform. Geophysics 64(2):539–551

    Article  Google Scholar 

  • Dykaar BB, Kitanidis PK (1992) Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach. 1. Method. Water Resour Res 28(4):1155–1166

    Article  Google Scholar 

  • Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transform using min-max interpolation. IEEE Trans Signal Process 51(2):560–574

    Article  Google Scholar 

  • Fourmont K (2003) Non-equispaced fast Fourier transforms with applications to tomography. J Fourier Anal Appl 9(5):431–450

    Article  Google Scholar 

  • Frigo M, Johnson SG (1998) FFTW: An adaptive software architecture for the FFT. In: Proc ICASSP, vol 3. IEEE Press, New York, pp 1381–1384. http://www.fftw.org

    Google Scholar 

  • Fuentes M (2007) Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102(477) 321–331. doi:10.1198/016214506000000852

    Article  Google Scholar 

  • Gallivan K, Thirumalai S, Dooren PV, Vermaut V (1996) High performance algorithms for Toeplitz and block Toeplitz matrices. Linear Algebra Appl 241–243(13):343–388

    Article  Google Scholar 

  • Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, Baltimore

    Google Scholar 

  • Good IJ (1950) On the inversion of circulant matrices. Biometrika 37:185–186

    Google Scholar 

  • Greengard L, Lee J-Y (2004) Accelerating the nonuniform fast Fourier transform. SIAM Rev 46(3):443–454

    Article  Google Scholar 

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–436

    Google Scholar 

  • Kailath T, Sayed AH (1995) Displacement structure: Theory and applications. SIAM Rev 37(3):297–386

    Article  Google Scholar 

  • Kailath T, Sayed AH (1999) Fast reliable algorithms of matrices with structure. SIAM, Philadelphia

    Google Scholar 

  • Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507

    Article  Google Scholar 

  • Kitanidis PK (1993) Generalized covariance functions in estimation. Math Geol 25(5):525–540

    Article  Google Scholar 

  • Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    Article  Google Scholar 

  • Kitanidis PK (1996) Analytical expressions of conditional mean, covariance, and sample functions in geostatistics. Stoch Hydrol Hydraul 12:279–294

    Article  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, Cambridge

    Google Scholar 

  • Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour Res 19(3):677–690

    Article  Google Scholar 

  • Kozintsev B (1999) Computations with Gaussian random fields. PhD thesis, Institute for Systems Research, University of Maryland

  • Liu QH, Ngyuen N (1998) An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s). IEEE Microw Guided Wave Lett 8(1):18–20

    Article  Google Scholar 

  • Müller WG (2007) Collecting spatial data. Optimum design of experiments for random fields, 3rd edn. Springer, Berlin

    Google Scholar 

  • Newsam GN, Dietrich CR (1994) Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices. IEEE Trans Inf Theory 40(4):1218–1220

    Article  Google Scholar 

  • Nowak W (2005) Geostatistical methods for the identification of flow and transport parameters in subsurface flow. Ph.D. thesis, Institut für Wasserbau, Universität Stuttgart, http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=2275

  • Nowak W, Cirpka OA (2004) A modified Levenberg–Marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7):737–750

    Article  Google Scholar 

  • Nowak W, Cirpka OA (2006) Geostatistical inference of conductivity and dispersion coefficients from hydraulic heads and tracer data. Water Resour Res 42:W08416. doi:10.1029/2005WR004832

    Article  Google Scholar 

  • Nowak W, Tenkleve S, Cirpka OA (2003) Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities. Math Geol 35(1):53–66

    Article  Google Scholar 

  • Omre H (1987) Bayesian kriging-merging observations and qualified guesses in kriging. Math Geol 19(1):25–39

    Article  Google Scholar 

  • Pegram GGS (2004) Spatial interpolation and mapping of rainfall (SIMAR). Data merging for rainfall map production, vol 3. Water Research Commission Report (1153/1/04)

  • Press WH, Teukolsky BPFSA, Vetterling WT (1992) Numerical recipes: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. Classics in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  • Rino CL (1970) The inversion of covariance matrices by finite Fourier transforms. IEEE Trans Inf Theory 16:230–232

    Article  Google Scholar 

  • Schweppe FC (1973) Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Shewchuk JR (1994). An introduction to the conjugate gradient method without the agonizing pain. http://www.cs.berkeley.edu/~jrs/

  • Strang G (1986) A proposal for Toeplitz matrix calculations. Stud Appl Math 74:171–176

    Google Scholar 

  • Trapp GE (1973) Inverses of circulant matrices and block circulant matrices. Kyungpook Math J 13(1): 11–20

    Google Scholar 

  • Van Barel M, Heinig G, Kravanja P (2001) A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J Matrix Anal A 23(2):494–510

    Article  Google Scholar 

  • van Loan CF (1992) Computational frameworks for the fast Fourier transform. SIAM, Philadelphia

    Google Scholar 

  • Varga RS (1954) Eigenvalues of circulant matrices. Pac J Math 4:151–160

    Google Scholar 

  • Vargas-Guzmán JA, Yeh T-CJ (1999) Sequential kriging and cokriging: Two powerful geostatistical approaches. Stoch Environ Res Risk Assess 13:416–435

    Article  Google Scholar 

  • Vargas-Guzmán JA, Yeh T-CJ (2002) The successive linear estimator: a revisit. Adv Water Resour 25:773–781

    Article  Google Scholar 

  • Wesson SM, Pegram GGS (2004) Radar rainfall image repair techniques. Hydrol Earth Syst Sci 8(2):8220–8234

    Article  Google Scholar 

  • Zimmerman DL (1989) Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models. J Stat Comput Simul 32(1/2):1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, J., Neuweiler, I. & Nowak, W. Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems. Math Geosci 41, 509–533 (2009). https://doi.org/10.1007/s11004-009-9220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-009-9220-x

Keywords

Navigation