Skip to main content
Log in

On the exponential Diophantine equation \(x^{2}+2^{a}p^{b}=y^{n}\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(p\) be an odd prime. In this paper we study the integer solutions \((x,y,n,a,b)\) of the equation \(x^{2}+2^{a}p^{b}=y^{n}, x\ge 1,y>1,\gcd (x,y)=1,a\ge 0,b\ge 0,n\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Arif, F.S. Abu Muriefah, on the Diophantine equation \(x^{2}+q^{2k+1}=y^{n}\). J. Number Theory 95, 95–100 (2002)

  2. M.A. Bennett, C.M. Skinner, Ternary Diophantine equation via Galois representations and modular forms. Can. J. Math. 56, 23–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bérczes, I. Pink, On the Diophantine equation \(x^{2}+p^{2k}=y^{n}\). Arch. Math. 91, 505–517 (2008)

    Article  MATH  Google Scholar 

  4. Y. Bilu, G. Hanrot, P.M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte). J. Reine Angew. Math. 539, 75–122 (2001)

    MATH  MathSciNet  Google Scholar 

  5. I.N. Cangül, M. Demirci, F. Luca, À. Pintér, G. Soydan, On the Diophantine equation \(x^2 + 2^{a} 11^{b} =y^{n}\). Fibonacci Quart. 48(1), 39–46 (2010)

    MATH  MathSciNet  Google Scholar 

  6. R.D. Carmichael, On the numerical factors of the arithmetic forms \(\alpha ^n-\beta ^n\). Ann. Math. (2) 15, 30–70 (1913)

    Article  MATH  Google Scholar 

  7. J.H.E. Cohn, Cohn, the Diophantine equation \(x^2+2^k=y^n\). Arch. Math. Basel 59(4), 341–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Dabrowski, On the Lebesgue-Nagell equation. Colloq. Math. 125(2), 245–253 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Le, Some exponential Diophantine equations I: the equation \(D_{1}x^{2}-Dy^{2}=\lambda k^z\). J. Number Theory 55(2), 209–221 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Le, On Cohn’s conjecture concerning the Diophantine equation \(x^{2}+2^{m}=y^{n}\). Arch. Math. (Basel) 78(1), 26–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. L.A. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation \(x^{m}=y^{2}+1\). Nouv. Ann. Math. (1) 9, 178–181 (1850)

    Google Scholar 

  12. W. Ljunggren, Einige Sätze über unbestimmte Gleichungen von der Form \(Ax^4+Bx^2+C=Dy^2\). Det Norske Vid. Akad. Skr 9, 53 pp (1942)

    MathSciNet  Google Scholar 

  13. W. Ljunggren, Über die Gleichungen \(1+Dx^2=2y^n\) und \(1+Dx^2=4y^n\). Norsk Vid. Selsk. Forh. 15(30) 115–118 (1943)

  14. W. Ljunggren, W. Ljunggren, Ein Satz über die Diophantische Gleichung \(Ax^2-By^4=C(C=1,2,4)\). Tolfte Skand. Mat. Lund. 10(2)188–194 (1954)

  15. F. Luca, On the equation \(x^2 + 2^{a} 3^{b} =y^{n}\). Int. J. Math. Math. Sci. 29(3), 239–244 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Luca, A. Togbé, On the equation \(x^2 + 2^{a} 5^{b} =y^{n}\). Int. J. Number Theory 4(6), 973–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Luca, A. Togbé, On the equation \(x^2 + 2^{\alpha } 13^{\beta } =y^{n}\). Colloq. Math. 116(1), 139–146 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Mihǎilescu, Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)

    MathSciNet  Google Scholar 

  19. T. Nagell, Sur l’impossibilité de quelques équations à deux indéterminés. Norske Mat. Forenings Skr. Sér. I 13(1), 65–82 (1923)

    Google Scholar 

  20. T. Nagell, Über die rationaler Punkte auf einigen kubischen Kurven. Tǒhoku Math. J. 24(1), 48–53 (1924)

    MATH  MathSciNet  Google Scholar 

  21. G. Soydan, M. Ulas, H. Zhu, On the Diophantine equation \(x^2+2^{a}19^{b}=y^n\). Indian J. Pure Appl. Math. 43(3), 251–261 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64, 869–888 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. D.T. Walker, On the Diophantine equation \(mx^2-ny^2=\pm 1\). Am. Math. Mon. 74(5), 504–513 (1967)

    Article  MATH  Google Scholar 

  24. H. Zhu, A note on the Diophantine equation \(x^{2}+q^{m}=y^{3}\). Acta Arith. 146(2), 195–202 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. X. Pan, The exponential Lebesgue-Nagell equation \(x^2+p^{2m}=y^n\). Period. Math. Hung. 67(2), 231–242 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for the suggestions to improve this paper. The first author was partly supported by the Fundamental Research Funds for the Central Universities (No. 2012121004) and the Science Fund of Fujian Province (No. 2012J050009, 2013J05019). The second author was supported by NSFC (No. 10971184). The third author was supported by the research fund of Uludağ University Project (No. F-2013/87). The work on this paper was completed during a very enjoyable visit of the fourth author at The Institute of Mathematics of Debrecen. He thanks this institution and Professor Ákos Pintér for the hospitality. He was also supported in part by Purdue University North Central.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Le, M., Soydan, G. et al. On the exponential Diophantine equation \(x^{2}+2^{a}p^{b}=y^{n}\) . Period Math Hung 70, 233–247 (2015). https://doi.org/10.1007/s10998-014-0073-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0073-9

Keywords

Mathematics Subject Classification

Navigation