Skip to main content

Advertisement

Log in

Effectiveness of a Federal Healthy Start Program in Reducing the Impact of Particulate Air Pollutants on Feto-Infant Morbidity Outcomes

  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

We sought to assess (1) the relationship between air particulate pollutants and feto-infant morbidity outcomes and (2) the impact of a Federal Healthy Start program on this relationship. This is a retrospective cohort study using de-identified hospital discharge information linked to vital records, and air pollution data from 2000 through 2007 for the zip codes served by the Central Hillsborough Federal Healthy Start Project in Tampa, Florida. Mathematical modeling was employed to compute minimal Euclidean distances to capture exposure to ambient air particulate matter. The outcomes of interest were low birth weight (LBW), very low birth weight (VLBW), small for gestational age, preterm (PTB), and very preterm birth. We used odds ratios to approximate relative risks. A total of 12,356 live births were analyzed. Overall, women exposed to air particulate pollutants were at elevated risk for LBW (AOR = 1.24; 95% CI = 1.07–1.43), VLBW (AOR = 1.58; 95% CI = 1.09–2.29) and PTB (AOR = 1.18; 95% CI = 1.03–1.34). Analysis by race/ethnicity revealed that the adverse effects of air particulate pollutants were most profound among black infants. Infants of women who received services provided by the Central Hillsborough Federal Healthy Start Project experienced improved feto-infant morbidity outcomes despite exposure to air particulate pollutants. Environmental air pollutants represent important risk factors for adverse birth outcomes, particularly among black women. Multi-level interventional approaches implemented by the Central Hillsborough Federal Healthy Start were found to be associated with reduced likelihood for feto-infant morbidities triggered by exposure to ambient air particulate pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rich, D. Q., Demissie, K., Lu, S.-E., et al. (2009). Ambient air pollutant concentrations during pregnancy and the risk of fetal growth restriction. Journal of Epidemiology and Community Health, 63, 488–496.

    Article  PubMed  CAS  Google Scholar 

  2. Parker, J. D., Woodruff, T. J., Basu, R., et al. (2005). Air pollution and birth weight among term infants in California. Pediatrics, 115, 121–128.

    PubMed  Google Scholar 

  3. Lee, B. E., Ha, E. H., Park, H. S., et al. (2003). Exposure to air pollution during different gestational phases contributes to risks of low birth weight. Human Reproduction, 18, 638–643.

    Article  PubMed  CAS  Google Scholar 

  4. Hansen, C., Neller, A., Williams, G., et al. (2007). Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environmental Research, 103, 383–389.

    Article  PubMed  CAS  Google Scholar 

  5. Gehring, U., van Eijsden, M., Dijkema, M. B. A., et al. (2011). Traffic-related air pollution and pregnancy outcomes in the Dutch ABCD birth cohort study. Occupational and Environmental Medicine, 68(1), 36–43.

    Article  PubMed  CAS  Google Scholar 

  6. Gouveia, N., Bremner, S. A., et al. (2004). Association between ambient air pollution and birth weight in Sao Paulo, Brazil. Journal of Epidemiology and Community Health, 58(1), 11–17.

    Article  PubMed  CAS  Google Scholar 

  7. Ballester, F., Estarlich, M., Iñiguez, C., et al. (2010). Air pollution exposure during pregnancy and reduced birth size: A prospective birth cohort study in Valencia, Spain. Environmental Health, 9, 6.

    Article  PubMed  Google Scholar 

  8. Bell, M. L., Ebisu, K., & Belanger, K. (2007). Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environmental Health Perspectives, 115(7), 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  9. Srám, R. J., Binková, B., Dejmek, J., et al. (2005). Ambient air pollution and pregnancy outcomes: A review of the literature. Environmental Health Perspectives, 113(4), 375–382.

    Article  PubMed  Google Scholar 

  10. Brauer, M., Lencar, C., Tamburic, L., et al. (2008). A cohort study of traffic-related air pollution impacts on birth outcomes. Environmental Health Perspectives, 116(5), 680–686.

    Article  PubMed  Google Scholar 

  11. Dugandzic, R., Dodds, L., Stieb, D., et al. (2006). The association between low level exposures to ambient air pollution and term low birth weight: A retrospective cohort study. Environmental Health, 5, 3.

    Article  PubMed  Google Scholar 

  12. Maisonet, M., Correa, A., Misra, D., et al. (2004). A review of the literature on the effects of ambient air pollution on fetal growth. Environmental Research, 95(1), 106–115.

    Article  PubMed  CAS  Google Scholar 

  13. Ren, C., Melly, S., & Schwartz, J. (2010). Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—a case-crossover analysis at individual level. Environmental Health, 9, 3.

    Article  PubMed  Google Scholar 

  14. Hansen, C. A., Barnett, A. G., Jalaludin, B. B., et al. (2009). Ambient air pollution and birth defects in Brisbane, Australia. PLoS One, 4(4), e5408.

    Article  PubMed  Google Scholar 

  15. Ritz, B., Yu, F., Fruin, S., et al. (2002). Ambient air pollution and risk of birth defects in Southern California. American Journal of Epidemiology, 155(1), 17–25.

    Article  PubMed  Google Scholar 

  16. Ritz, B., Wilhelm, M., Hoggatt, K. J., et al. (2007). Ambient air pollution and preterm birth in the Environment and Pregnancy Outcomes Study at the University of California, Los Angeles. American Journal of Epidemiology, 166, 1045–1052.

    Article  PubMed  Google Scholar 

  17. Hansen, C., Neller, A., Williams, G., et al. (2006). Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. British Journal of Obstetrics and Gynaecology, 113(8), 935–941.

    Article  PubMed  CAS  Google Scholar 

  18. Huynh, M., Woodruff, T. J., Parker, J. D., et al. (2006). Relationships between air pollution and preterm birth in California. Paediatric and Perinatal Epidemiology, 20(6), 454–461.

    Article  PubMed  Google Scholar 

  19. Wu, J., Ren, C., Delfino, R. J., et al. (2009). Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the south coast air basin of California. Environmental Health Perspectives, 117(11), 1773–1779.

    Article  PubMed  CAS  Google Scholar 

  20. Glinianaia, S. V., Rankin, J., Bell, R., et al. (2004). Particulate air pollution and fetal health: A systematic review of the epidemiologic evidence. Epidemiology, 15(1), 36–45.

    Article  PubMed  Google Scholar 

  21. Yi, O., Kim, H., & Ha, E. (2009). Does area level socioeconomic status modify the effects of PM(10) on preterm delivery? Environmental Research, 110(1), 55–61.

    Article  Google Scholar 

  22. El-Mohandes, A. A., Kiely, M., Blake, S. M., et al. (2010). An intervention to reduce environmental tobacco smoke exposure improves pregnancy outcomes. Pediatrics, 125, 721–728.

    Article  PubMed  Google Scholar 

  23. Salihu, H. M., Mbah, A. K., Jeffers, D., et al. (2009). Healthy start program and feto-infant morbidity outcomes: Evaluation of program effectiveness. Maternal and Child Health Journal, 13(1), 56–65.

    Article  PubMed  Google Scholar 

  24. US Census Bureau. (2003). State and county facts. Available at: http://www.census.gov/.

  25. Mbah, A. K., Alio, A. P., Marty, P. J., Bruder, K., Wilson, R., & Salihu, H. M. (2011). Recurrent versus isolated pre-eclampsia and risk of feto-infant morbidity outcomes: Racial/ethnic disparity. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 156(1), 23–28.

    Article  PubMed  Google Scholar 

  26. Salihu, H. M., Stanley, K. M., Mbah, A. K., August, E. M., Alio, A. P., & Marty, P. J. (2010). Disparities in rates and trends of HIV/AIDS during pregnancy across the decade, 1998–2007. Journal of Acquired Immune Deficiency Syndromes, 55(3), 391–396.

    Article  PubMed  Google Scholar 

  27. Environmental Protection Agency. (2011). USA air quality system. Available at: http://www.epa.gov/ttn/airs/airsaqs/.

  28. Alexander, G. R., Kogan, M., Martin, J., & Papiernik, E. (1998). What are the fetal growth patterns of singletons, twins, and triplets in the United States? Clinical Obstetrics and Gynecology, 41, 114–125.

    Article  PubMed  CAS  Google Scholar 

  29. Taffel, S., Johnson, D., & Heuser, R. (1982). A method of imputing length of gestation on birth certificates. Vital Health Statistics, 2(93), 1–11.

    Google Scholar 

  30. Alexander, G. R., & Kotelchuck, M. (1996). Quantifying the adequacy of prenatal care: A comparison of indices. Public Health Report, 3, 408–418.

    Google Scholar 

  31. Kahn, E. B., Berg, C. J., & Callaghan, W. M. (2009). Cesarean delivery among women with low-risk pregnancies: A comparison of birth certificates and hospital discharge data. Obstetrics and Gynecology, 113(1), 33–40.

    PubMed  Google Scholar 

  32. Lydon-Rochelle, M. T., Holt, V. L., Cárdenas, V., Nelson, J. C., Easterling, T. R., Gardella, C., et al. (2005). The reporting of pre-existing maternal medical conditions and complications of pregnancy on birth certificates and in hospital discharge data. American Journal of Obstetrics and Gynecology, 193(1), 125–134.

    Article  PubMed  Google Scholar 

  33. Kuzawa, C. W., & Sweet, E. (2009). Epigenetics and the embodiment of race: Developmental origins of US racial disparities in cardiovascular health. American Journal of Human Biology, 21(1), 2–15.

    Article  PubMed  Google Scholar 

  34. Burris, H. H., & Collins, J. W. (2010). Race and preterm birth—the case for epigenetic inquiry. Ethnicity and Disease, 20(3), 296–299.

    PubMed  Google Scholar 

  35. Cutfield, W. S., Hofman, P. L., Mitchell, M., et al. (2007). Could epigenetics play a role in the developmental origins of health and disease? Pediatric Research, 61(5), 68R–75R.

    Article  PubMed  Google Scholar 

  36. Mitchell, M. D. (2006). Unique suppression of prostaglandin H synthase-2 expression by inhibition of histone deacetylation, specifically in human amnion but not adjacent choriodecidua. Molecular Cell Biology, 17(1), 549–553.

    CAS  Google Scholar 

  37. Dolinoy, D. C., Weidman, J. R., & Jirtle, R. L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23(3), 297–307.

    Article  PubMed  CAS  Google Scholar 

  38. Porter, T. F., Fraser, A. M., Hunter, C. Y., et al. (1997). The risk of preterm birth across generations. Obstetrics and Gynecology, 90(1), 63–67.

    Article  PubMed  CAS  Google Scholar 

  39. Woodruff, T. J., Grillo, J., & Schoendorf, K. C. (1997). The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environmental Health Perspective, 105(6), 608–612.

    Article  CAS  Google Scholar 

  40. van den Hooven, E. H., Jaddoe, V. W., de Kluizenaar, Y., et al. (2009). Residential traffic exposure and pregnancy-related outcomes: A prospective birth cohort study. Environmental Health, 8, 59.

    Article  PubMed  Google Scholar 

  41. Mannes, T., Jalaludin, B., Morgan, G., et al. (2005). Impact of ambient air pollution on birth weight in Sydney, Australia. Occupational and Environmental Medicine, 62(8), 524–530.

    Article  PubMed  CAS  Google Scholar 

  42. Salam, M. T., Millstein, J., Li, Y. F., et al. (2005). Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: Results from the Children’s Health Study. Environmental Health Perspective, 113(11), 1638–1644.

    Article  Google Scholar 

  43. Shaw, G. M., & Malcoe, L. H. (1992). Residential mobility during pregnancy for mothers of infants with or without congenital cardiac anomalies: A reprint. Archives of Environmental Health, 47(3), 236–238.

    Article  PubMed  CAS  Google Scholar 

  44. Canfield, M. A., Ramadhani, T. A., Langlois, P. H., et al. (2006). Residential mobility patterns and exposure misclassification in epidemiologic studies of birth defects. Journal of Exposure Science and Environmental Epidemiology, 16(6), 538–543.

    Article  PubMed  Google Scholar 

  45. Fell, D. B., Dodds, L., & King, W. D. (2004). Residential mobility during pregnancy. Pediatric and Perinatal Epidemiology, 18(6), 408–414.

    Article  PubMed  Google Scholar 

  46. Khoury, M. J., Stewart, W., Weinstein, A., et al. (1988). Residential mobility during pregnancy: Implications for environmental teratogenesis. Journal of Clinical Epidemiology, 41(6), 15–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamisu M. Salihu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salihu, H.M., August, E.M., Mbah, A.K. et al. Effectiveness of a Federal Healthy Start Program in Reducing the Impact of Particulate Air Pollutants on Feto-Infant Morbidity Outcomes. Matern Child Health J 16, 1602–1611 (2012). https://doi.org/10.1007/s10995-011-0854-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-011-0854-1

Keywords

Navigation