Skip to main content

Advertisement

Log in

A PlGF-1 Derived Peptide Inhibits Angiogenesis via HIF-1β/VEGF Pathway

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Many diseases are associated with angiogenesis. Therefore, inhibition of angiogenesis is deemed as a treatment for those diseases. To date, many angiogenesis inhibitors are from large plasma proteins. In this study we identified a 21-aa peptide (named peptide ZY1) from human placenta growth factor-1 and it may serve as a potent angiogenesis inhibitor. Our study demonstrated ZY1 inhibited angiogenesis in vitro by suppressing proliferation, migration and tube formation of HUVECs. The in vivo inhibition activity of ZY1 was observed in chicken chorioallantoic membrane assays and tumor-bearing mouse models. Moreover, we found ZY1 inhibited angiogenesis by decreasing the expression of HIF-1β and subsequently reducing its downstream molecule VEGF. In conclusion, peptide ZY1 can inhibit angiogenesis and may serve as an anti-angiogenesis drug candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bassino E, Antoniotti S, Gasparri F, Munaron L (2016) Effects of flavonoid derivatives on human microvascular endothelial cells. Nat Prod Res 2:1–4

    Google Scholar 

  • Cao RH, Wu HL, Veitonmāki N et al (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 96:5728–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Ye L, Zhang LJ, Jiang WG (2008) Placenta growth factor, PLGF, influenes the motility of lung cancer cells, the role of Rho associated kinase, Rock1. J Cell Biochem 105:313–320

    Article  CAS  PubMed  Google Scholar 

  • Christinger HW, Fuh G, de Vos AM, Wiesmann C (2004) The crystal structure of placental growth facotr in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem 279:10382–10388

    Article  CAS  PubMed  Google Scholar 

  • Drevs J, Zirrgiebel U, Schmidt-Gersbach CIM et al (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16:558–565

    Article  CAS  PubMed  Google Scholar 

  • Eelen G, de Zeeuw P, Simons M, Carmeliet P (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116:1231–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errico M, Riccioni T, Iyer S et al (2004) Identification of placenta growth factor determinants for binding and activation of Flt-1 receptor. J Biol Chem 279:43929–43939

    Article  CAS  PubMed  Google Scholar 

  • Ettayapuram Ramaprasad AS, Singh S, Gajendra PSR, Venkatesan S (2015) AntiAngioPred: a server for prediction of anti-angiogenic peptides. PLos One 9:e0136990

    Article  Google Scholar 

  • Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B (2016) Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 164:204–225

    Article  CAS  PubMed  Google Scholar 

  • Gacche RN, Meshram RJ (2014) Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta 1846:161–179

    CAS  PubMed  Google Scholar 

  • Hao Z, Sadek L (2016) Sunitinib: the antiangiogenic effects and beyond. Onco Targets Ther 9:5495–5505

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer S, Leonidas DD, Swaminathan J et al (2001) The crystal structure of human placenta growth factor-1 (PlGF-1) an angiogenic protein at 2.0 Å resolution. J Biol Chem 276:12153–12161

    Article  CAS  PubMed  Google Scholar 

  • Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. The Lancet 10043:518–529

    Article  Google Scholar 

  • Kasai A, Shintani N, Oda M et al (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–400

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhang Q, Luo W (2016) Angiogenesis inhibitors as therapeutic agents in cancer: challenges and future directions. Eur J Pharmacol 793:76–81

    Article  CAS  PubMed  Google Scholar 

  • Luttun A, Autiero M, Tjwa M, Carmeliet P (2004) Genetic dissection of tumor angiogenesis: are PlGF and VEGFR-1 novel anti-cancer targets?. Biochim Biophys Acta 1654:79–94

    CAS  PubMed  Google Scholar 

  • Maltepe E, Schmidt JV, Baunoch D et al (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    Article  CAS  PubMed  Google Scholar 

  • Masoud GN, Li W (2015) HIF-1 α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2008) The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis 11:215–221

    Article  CAS  PubMed  Google Scholar 

  • Rosca EV, Koskimaki JE et al (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12:1101–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahneh FZ, Baradaran B, Zamani F, Aghebati-Maleki L (2013) Tumor aniogenesis and anti-angiogenic therapies. Hum Antib 22:15–19

    CAS  Google Scholar 

  • Sulochana KN, Fan HP, Jois S et al (2005) Peptides derived from human decorin leucine-rich repeat 5 inhibit angiogenesis. J Biol Chem 280:27935–27948

    Article  CAS  PubMed  Google Scholar 

  • Takeshita S, Zheng LP, Brogi E et al (1994) Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima J, Sampei S, Iidzuka M et al (2016) VEGF expression is regulated by HIF-1α and ARNT in 3D KYSE-70, esophageal cancer cell spheroids. Cell Biol Int 11:1187–1194

    Article  Google Scholar 

  • Tjwa M, Luttun A, Autiero M, Carmeliet P (2003) VEGF and PlGF, two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res 314:5–14

    Article  CAS  PubMed  Google Scholar 

  • Vandewynckel YP, Laukens D, Devisscher L et al (2016) Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma. BMC Cancer 16:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Warfel NA, El-Deiry WS (2014) HIF-1 signaling in drug resistance to chemotherapy. Curr Med Chem 26:3021–3028

    Article  Google Scholar 

  • Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhao H, Zheng Y et al (2010) A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo. Mol Vis 16:1982–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi ZF, Cho SG, Zhao H et al (2009) A novel peptide from human apolipoprotein (a) inhibits angiogenesis and tumor growth by targeting c-Scr phosphorylation in VEGF-induced human umbilical endothelial cell. Int J Cancer 124:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Z, Qing G, Xun X (2012) Inhibition of ocular neovascularization by a novel peptide derived from human placenta growth factor-1. Acta Ophthalmol 90:512–523

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Research Fund for the National Nature Science Funding of China (No. 81402233). Weijun Wang and Qing Gu performed the research. Ying Zheng and Weijun Wang analyzed the data. Ying Zheng and Xun Xu designed the research study and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zheng.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Gu, Q., Xu, X. et al. A PlGF-1 Derived Peptide Inhibits Angiogenesis via HIF-1β/VEGF Pathway. Int J Pept Res Ther 23, 343–355 (2017). https://doi.org/10.1007/s10989-016-9567-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-016-9567-z

Keywords

Navigation