Skip to main content

Advertisement

Log in

Inhibitory Effect of Alloferons in Combination with Human Lymphocytes on Human Herpesvirus 1 (HHV-1) Replication In Vitro

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Over the past two decades there has been intense study of compounds from vertebrates, microorganisms, plants, mushrooms, marine sponges, worms, etc. as well as insects in terms of their antiviral activity. Insects produce a variety of biologically active peptides. One of them is alloferon. The in vitro and in vivo experiments demonstrate that synthetic alloferon has an immunomodulatory properties. It was reported that alloferon and its analogues (alloferon I and II) have antimicrobial properties, as well. The aim of this study was to evaluate in vitro the effect of alloferon I and II, either alone or in combination with human lymphocytes, on human herpesvirus type 1 (HHV-1) McIntyre strain replication. On the base of results we can conclude that alloferon I and II inhibit the replication of HHV-1 McIntyre strain in HEp-2 cells. Enhanced antiviral activity was observed when infected cells were treated with alloferons and unstimulated or phytohemagglutinin PHA-stimulated lymphocytes simultaneously. After application of alloferons and PHA-stimulated lymphocytes to the HHV-1 infected HEp-2 culture, the mean HHV-1 titer reduction for alloferon and II, when used at the highest dose—400 µg/mL, were 3.69 and 3.27 log10/TCID50/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Askeland EJ, Newton MR, O’Donnell MA, Lu Y (2012) Bladder cancer immunotherapy: BCG and beyond. Adv Urol. doi:10.1155/2012/181987

    PubMed  PubMed Central  Google Scholar 

  • Berthold N, Hoffmann R (2014) Cellular uptake of apidaecin 1b and related analogs in gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides. Protein Pept Lett 21(4):391–398

    Article  CAS  PubMed  Google Scholar 

  • Brown TJ, McCrary M, Tyring SK (2002) Antiviral agents: nonantiviral drugs. J Am Acad Dermatol 47:581–599

    Article  PubMed  Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99(20):12628–12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cymerys J, Dzieciatkowski T, Golke A, Słońska A, Majewska A, Krzyżowska M, Bańbura MW (2013) Primary cultures of murine neurons for studying herpes simplex virus 1 infection and its inhibition by antivirals. Acta Virol 57(3):339–345

    CAS  PubMed  Google Scholar 

  • De Clercq E (2011) Outlook of the antiviral drug era, now more than 50 years after description of the first antiviral drug, in antiviral drug strategies, ed E. De Clercq. Wiley, Germany

    Book  Google Scholar 

  • De Clercq E (2013) Selective anti-herpesvirus agents. Antivir Chem Chemother 23(3):93–101

    Article  PubMed  Google Scholar 

  • De Clerq E (2012) Milestones in the discovery of antiviral agents: nucleosides and nucleotides. APSB 2(6):535–548

    Google Scholar 

  • Fattorini L, Gennaro R, Zanetti M, Tan D, Brunori L, Giannoni F, Pardini M, Orefici G (2004) In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides 25(7):1075–1077

    Article  CAS  PubMed  Google Scholar 

  • Hamelryck TW, Dao-Thi MH, Poortmans F, Chrispeels MJ, Wyns L, Loris R (1996) The crystallographic structure of phytohemagglutinin-L. J Biol Chem 271(34):20479–20485

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Im JP, Kim JS, Kang JS, Lee WJ (2015) Alloferon alleviates dextran sulfate sodium-induced colitis. Immune Netw 15(3):135–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitazato K, Wang Y, Kobayashi N (2007) Viral infectious disease and natural products with antiviral activity. Drug Discov Ther 1(1):14–22

    CAS  PubMed  Google Scholar 

  • Krawczyk E, Luczak M, Kniotek M, Majewska A, Kawecki D, Nowaczyk M (2005) Immunomodulatory activity and influence on mitotic divisions of N-benzoylphenylisoserinates of Lactarius sesquiterpenoid alcohols in vitro. Planta Med 71(9):819–824

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk E, Kniotek M, Nowaczyk M, Dzieciatkowski T, Przybylski M, Majewska A, Luczak M (2006) N-acetylphenylisoserinates of Lactarius sesquiterpenoid alcohols-cytotoxic, antiviral, antiproliferative and immunotropic activities in vitro. Planta Med 72(7):615–620

    Article  CAS  PubMed  Google Scholar 

  • Kuczer M, Dziubasik K, Midak-Siewirska A, Zahorska R, Łuczak M, Konopińska D (2010) Studies of insect peptides alloferon, any-GS and their analogues. Synthesis and antiherpes activity. J Pept Sci 16(4):186–189

    CAS  PubMed  Google Scholar 

  • Kuczer M, Czarniewska E, Rosiński G (2013a) Novel biological effects of alloferon and its selected analogues: structure–activity study. Regul Pept 183:17–22

    Article  CAS  PubMed  Google Scholar 

  • Kuczer M, Majewska A, Zahorska R (2013b) New alloferon analogues: synthesis and antiviral properties. Chem Biol Drug Des 81(2):302–309

    Article  CAS  PubMed  Google Scholar 

  • Lasek W, Janyst M, Wolny R, Zapała Ł, Bocian K, Drela N (2015) Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes. Acta Pharm 65:171–180

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Bae S, Kim H, Kong JM, Kim HR, Cho BJ, Kim SJ, Seok SH, Hwang YI, Kim S, Kang JS, Lee WJ (2011) Inhibition of lytic reactivation of Kaposi’s sarcoma-associated herpesvirus by alloferon. Antivir Ther 16(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Limin Y, Wenjun L (2013) Distinct evolution process among type I interferon in mammals. Protein Cell 4(5):383–392

    Article  Google Scholar 

  • Majewska A, Lasek W, Janyst M, Mlynarczyk G (2015a) Inhibition of adenovirus multiplication by inosine pranobex and interferon-α in vitro. CEJI (in press)

  • Majewska A, Mlynarczyk-Bonikowska B, Malejczyk M, Mlynarczyk G, Majewski S (2015b) Antiviral medication in sexually transmitted diseases. Part II: HIV. Mini Rev Med Chem 15(2):93–103

    Article  CAS  PubMed  Google Scholar 

  • Majewska A, Lasek W, Janyst M, Mlynarczyk G (2016) In vitro inhibition of HHV-1 replication by inosine pranobex and interferon- α. Acta Pol Pharm Drug Res (in press)

  • Miyanoshita A, Hara S, Sugiyama M, Asaoka A, Taniai K, Yukuhiro F, Yamakawa M (1996) Isolation and characterization of a new member of the insect defensin family from a beetle Allomyrina dichotoma. Biochem Biophys Res Commun 220(3):526–531

    Article  CAS  PubMed  Google Scholar 

  • Mlynarczyk-Bonikowska B, Majewska A, Malejczyk M, Mlynarczyk G, Majewski S (2013) Antiviral medication in sexually transmitted diseases. Part I: HSV, HPV. Mini Rev Med Chem 13(13):1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Mosa C, Trizzino A, Di Marco F, D’Angelo P, Farruggia P (2014) Treatment of human papillomavirus infection with interferon alpha and ribavirin in a patient with acquired aplastic anemia. Int Inf Dis 23:25–27

    Article  Google Scholar 

  • Orhan IE (2014) Pharmacognosy: science of natural products in drug discovery. Bioimpacts 4(3):109–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pranczyk J, Jacewicz D, Wyrzykowski D, Chmurzynski L (2015) Platinum(II) and palladium(II) complex compounds as anti-cancer drugs. Methods of cytotoxicity determination. Curr Pharm Anal 10:2–9

    Article  Google Scholar 

  • Reed LJ, Muench HA (1938) A simple method of estimating fifty per cent endpoint. Am J Hyg 27:493–497

    Google Scholar 

  • Ryu MJ, Anikin V, Hong SH, Jeon H, Yu YG, Yu MH, Chernysh S, Lee C (2008) Activation of NF-kappa B by alloferon through down-regulation of antioxidant proteins and I-kappa-B-alpha. Mol Cell Biochem 313:91–102

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Kaur M, Minneman KP (2010) Antiviral lead compounds from marine sponges. Mar Drugs 8(10):2619–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman RA, Hall MJ, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81

    Article  CAS  PubMed  Google Scholar 

  • Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett 15(6):578–585

    Article  CAS  PubMed  Google Scholar 

  • Strasfeld L, Chou S (2010) Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 24(2):413–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK (2010) Animal proteins and peptides: anticancer and antimicrobial potential. J Pharm Res 3(12):3100–3108

    CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by The Medical University of Warsaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Majewska.

Ethics declarations

Conflicts of interest

Anna Majewska, Witold Lasek, Mariola Kuczer, Grażyna Młynarczyk confirm that this article content has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majewska, A., Lasek, W., Kuczer, M. et al. Inhibitory Effect of Alloferons in Combination with Human Lymphocytes on Human Herpesvirus 1 (HHV-1) Replication In Vitro. Int J Pept Res Ther 22, 255–261 (2016). https://doi.org/10.1007/s10989-015-9506-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9506-4

Keywords

Navigation