Skip to main content
Log in

Interaction Between Endocannabinoid and Opioidergic Systems Regulates Food Intake in Neonatal Chicken

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Endocannabinoids and opiates have regulatory role in some physiological functions in mammals but their interaction(s) have not been studied in avian. This survey is designed to investigate interaction of these systems on feeding behavior in neonatal chickens. In experiment 1, chicken intracerebroventricular (ICV) injected with saline, DAMGO (µ-opioid receptors agonist, 125 pmol), SR141716A (CB1 receptors antagonist, 6.25 µg) and SR141716A + DAMGO. In experiment 2, saline, DAMGO, AM630 (CB2 receptors antagonist, 1.25 µg) and DAMGO + AM630. Experiments 3–6 followed the procedure similar to experiments 1 and 2, except DPDPE (δ-opioid receptors agonist, 40 pmol) and U-50488H (κ-opioid receptors agonist, 30 nmol) instead of DAMGO were used. In experiment 7, saline, Naloxone (opioid receptors antagonist, 5 µg), 2-AG (CB1 receptors agonist, 2 µg), Naloxone + 2-AG were used. Experiment 8 was similar to experiment 7, except CB65 (CB2 receptors agonist, 1.25 µg) used instead of 2-AG. Cumulative food intake was recorded until 120 min post injection. Data provided that, ICV injection of DAMGO decreased food intake and its effect amplified by CB1 and CB2 receptors antagonist (P < 0.001). DPDPE increased food intake and CB2 receptors antagonist blocked DPDPE-induced hyperphagia (P < 0.001). U-50488H-induced feeding but its effect did not alter via CB1 and CB2 receptors antagonist (P > 0.05). Hyperphagia-induced by CB1 and CB2 receptors agonist amplified by naloxone (P < 0.001). Perhaps there is interaction between endocannabinoid and opioidergic systems on appetite regulation in chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes MJ, Holmes G, Primeaux SD, York DA, Bray GA (2006) Increased expression of mu opioid receptors in animals susceptible to diet-induced obesity. Peptides 27:3292–3298

    Article  CAS  PubMed  Google Scholar 

  • Bodnar RJ (2012) Endogenous opiates and behavior: 2011. Peptides 38:463–522

    Article  CAS  PubMed  Google Scholar 

  • Braida D, Pozzi M, Parolaro D, Sala M (2001) Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol 413:227–234

    Article  CAS  PubMed  Google Scholar 

  • Browning KN, Zheng Z, Gettys TW, Travagli RA (2006) Vagal afferent control of opioidergic effects in rat brainstem circuits. J Physiol 575:761–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bungo T, Kawamura K, Izumi T, Dodo K, Ueda H (2004) Feeding responses to µ-, δ- and κ-opioid receptor agonists in the meat-type chick. Pharmacol Biochem Behav 78:707–710

    Article  CAS  PubMed  Google Scholar 

  • Bungo T, Kawamura K, Izumi T, Dodo K, Ueda H (2005) Effects of various µ-, δ- and κ-opioid ligands on food intake in the meat-type chick. Physiol Behav 85:519–523

    Article  CAS  PubMed  Google Scholar 

  • Chen RZ, Frassetto A, Fong TM (2006) Effects of the CB1 cannabinoid receptor inverse agonist AM251 on food intake and body weight in mice lacking μ-opioid receptors. Brain Res 1108:176–178

    Article  CAS  PubMed  Google Scholar 

  • D’Addario C, Micioni Di Bonaventura MV, Puccia M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M (2014) Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 47:203–224

    Article  PubMed  Google Scholar 

  • Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of l-proline in chicks after intracerebral injection. Physiol Behav 22:693–695

    Article  CAS  PubMed  Google Scholar 

  • Denbow DM (1994) Peripheral regulation of food intake in poultry. J Nutr 124:1349S–1354S

    CAS  PubMed  Google Scholar 

  • Di Marzo VGS, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  • Dodo K, Izumi TH, Ueda H, Bungo T (2005) Response of neuropeptide Y-induced feeding to µ-, δ- and κ-opioid receptor antagonists in the neonatal chick. Neurosci Lett 373:85–88

    Article  CAS  PubMed  Google Scholar 

  • Emadi L, Jonaidi H, Hosseini Amir Abad E (2011) The role of central CB2 cannabinoid receptors on food intake in neonatal chicks. J Comp Physiol A 197:1143–1147

    Article  CAS  Google Scholar 

  • Fichna J, Janecka A, Costentin J, Do Rego J (2007) The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 59:88–123

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ, Nilsson O, Andersson M, Disney G, Jacobsson SO, Tiger G (2001) Pharmacological properties of cannabinoid receptors in the avian brain: similarity of rat and chicken cannabinoid1 receptor recognition sites and expression of cannabinoid2 receptor-like immunoreactivity in the embryonic chick brain. Pharmacol Toxicol 88:213–222

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S (1997) The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol 339:211–214

    Article  CAS  PubMed  Google Scholar 

  • Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by μ-opioid and 6-opioid receptors. J Neurosci 22(3):1146–1154

    CAS  PubMed  Google Scholar 

  • Ibegbu AO, Mullaney I, Fyfe L, MacBean D (2011) The roles of opioid receptors and agonists in health and disease conditions. Br J Pharmacol Toxicol 2(2):84–91

    CAS  Google Scholar 

  • Irwin N, Hunter K, Frizzell N, Flatt PR (2008) Antidiabetic effects of sub-chronic administration of the cannabinoid receptor (CB1) antagonist, AM251, in obese diabetic (ob/ob) mice. Eur J Pharmacol 581:226–233

    Article  CAS  PubMed  Google Scholar 

  • Kaneko K, Yoshikawa M, Ohinata K (2012) Novel orexigenic pathway prostaglandin D2-NPY system-involvement in orally active orexigenic δ opioid peptide. Neuropeptides 46:353–357

    Article  CAS  PubMed  Google Scholar 

  • Khan MSI, Ohkubo T, Masuda N, Tachibana T, Ueda H (2009) Central administration of metastin increases food intake through opioid neurons in chicks. Comp Biochem Physiol Part A 153:209–212

    Article  Google Scholar 

  • Kirkham TC, Williams CM (2001) Synergistic effects of opioid and cannabinoid antagonists on food intake. Psychopharmacol 153:267–270

    Article  CAS  Google Scholar 

  • Kozlov AP, Nizhnikov M, Kramskaya TA, Varlinskaya EI, Spear NE (2013) Mu-opioid blockade reduces ethanol effects on intake and behavior of the infant rat during short-term but not long-term social isolation. Pharmacol Biochem Behav 103:773–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Merrer J, Becker JAJ, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412

    Article  PubMed Central  PubMed  Google Scholar 

  • Levine AS (2006) The animal model in food intake regulation: examples from the opioid literature. Physiol Behav 89:92–96

    Article  CAS  PubMed  Google Scholar 

  • López HH (2010) Cannabinoid–hormone interactions in the regulation of motivational processes. Hormones Behav 58:100–110

    Article  Google Scholar 

  • Manzanares J, Ortiz S, Oliva JM, Perez-Rial S, Palomo T (2005) Interactions between cannabinoid and opioid receptor systems in the mediation of ethanol effects. Alcohol Alcohol 40(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • McCormack JF, Denbow DM (1990) Central versus peripheral opioid regulation of ingestive behavior in the domestic fowl. Pharmacol Biochem Behav 96(1):211–216

    Google Scholar 

  • Meade S, Denbow M (2001) Feeding, drinking, and temperature response of chickens to intracerebroventricular histamine. Physiol Behav 73:65–73

    Article  CAS  PubMed  Google Scholar 

  • Novoseletsky N, Nussinovitch A, Friedman-Einat M (2011) Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. Gen Comp Endocrinol 170:522–527

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju HA, Thaxton JP, Dozier WA, Purswell J, Roush WB, Branton SL (2006) A review of lighting programs for broiler production. Int J poultry Sci 5(4):301–308

    Article  Google Scholar 

  • Onaivi ES, Carpio O, Ishiguro H, Schanz N, Uhl GR, Benno R (2008) Behavioral effects of CB2 cannabinoid receptor activation and its influence on food and alcohol consumption. Ann N Y Acad Sci 1139:426–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onaivi ES, Ishiguro H, Gu S, Liu QR (2012) CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26:92–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickel V, Chan J, Kash T, Rodriguez J, MacKie K (2004) Compartment-specific localization of cannabinoid 1 (CB1) and μ-opioid receptors in rat nucleus accumbens. Neuroscience 127(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Pritchett CE, Pardee AL, McGuirk SR, Will MJ (2010) The role of nucleus accumbens adenosine–opioid interaction in mediating palatable food intake. Brain Res 1306:85–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125:201–208

    Article  CAS  PubMed  Google Scholar 

  • Sharkey KA, Darmani NA, Parker LA (2014) Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol 722:134–146

    Article  CAS  PubMed  Google Scholar 

  • Skelly MJ, Guy EG, Howlett AC, Pratt WE (2010) CB1 receptors modulate the intake of a sweetened-fat diet in response to mu-opioid receptor stimulation of the nucleus accumbens. Pharmacol Biochem Behav 97:144–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacol 30:2035–2045

    Article  CAS  Google Scholar 

  • Soria-Gomez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospero-Garcia O (2007) Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol 151:1109–1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taha SA (2010) Preference or fat? Revisiting opioid effects on food intake. Physiol Behav 100:429–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tambaro S, Tomasi ML, Bortolato M (2013) Long-term CB1 receptor blockade enhances vulnerability to anxiogenic-like effects of cannabinoids. Neuropharmacol 70:268–277

    Article  CAS  Google Scholar 

  • Van Tienhoven A, Juhasz LP (1962) The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol 118:185–197

    Article  Google Scholar 

  • Wiley JL, Marusich JA, Zhang Y, Fulp A, Maitra R, Thomas BF, Mahadevan A (2012) Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur J Pharmacol 695:62–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams CM, Kirkham TC (2002) Reversal of ∆9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav 71:333–340

    Article  CAS  PubMed  Google Scholar 

  • Steinman JL, Fujikawa DG, Wasterlain CG, Cherkin A, Morley JE (1987) The effects of adrenergic, opioid and pancreatic polypeptidergic compounds on feeding and other behaviors in neonatal leghorn chicks. Peptides 8:585–592

    Article  CAS  PubMed  Google Scholar 

  • Yanagita K, Shiraishi J, Fujita M, Bungo T (2008) Effects of N-terminal fragments of β-endorphin on feeding in chicks. Neurosci Lett 442:140–142

    Article  CAS  PubMed  Google Scholar 

  • Yao L, McFarland K, Fan P, Jiang Z, Ueda T, Diamond I (2006) Adenosine A2a blockade prevents synergy between mu-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats. Proc Natl Acad Sci 103:7877–7882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zendehdel M, Hassanpour S (2014) Ghrelin-induced hypophagia is mediated by the β2 adrenergic receptor in chicken. J Physiol Sci 64:383–391

    Article  CAS  PubMed  Google Scholar 

  • Zendehdel M, Mokhtarpouriani K, Babapour V, Baghbanzadeh A, Pourrahimi M, Hassanpour S (2013a) The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J Physiol Sci 63:271–277

    Article  CAS  PubMed  Google Scholar 

  • Zendehdel M, Mokhtarpouriani K, Hamidi F, Montazeri R (2013b) Intracerebroventricular injection of ghrelin produces hypophagia through central serotonergic mechanisms in chicken. Vet Res Commun 37(1):37–41

    Article  PubMed  Google Scholar 

  • Zendehdel M, Hamidi F, Hassanpour S (2014a) The effect of histaminergic system on nociceptin/orphanin FQ induced food intake in chicken. Int J Pept Res Ther. doi:10.1007/s10989-014-9445-5

    Google Scholar 

  • Zendehdel M, Hasani K, Babapour V, Seyedali Mortezaei S, Khoshbakht Y, Hassanpour S (2014b) Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet Res Commun 38:11–19

    Article  Google Scholar 

  • Zheng H, Patterson LM, Berthoud HR (2007) Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 27:11075–11082

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Morteza Zendehdel, Shahin Hassanpour, Vahab Babapour, Saeed Charkhkar and Mahshid Mahdavi declare that they have no conflict of interest.

Human and Animal Rights

All experiments executed in according to the Guide for the Care and Use of Laboratory Animals and approved by the institutional animal ethical committee.

Informed Consent

This manuscript does not contain any studies with human subjects performed by any of authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Zendehdel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendehdel, M., Hassanpour, S., Babapour, V. et al. Interaction Between Endocannabinoid and Opioidergic Systems Regulates Food Intake in Neonatal Chicken. Int J Pept Res Ther 21, 289–297 (2015). https://doi.org/10.1007/s10989-015-9457-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9457-9

Keywords

Navigation