Skip to main content

Advertisement

Log in

Optimized Microwave Assisted Synthesis of LL37, a Cathelicidin Human Antimicrobial Peptide

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

LL37, a human cathelecidin antimicrobial peptide comprising of 37 amino acids has emerged as one of the vital therapeutic peptides associated with a number of biological applications. In this context, we herein report a highly efficient and optimized methodology for the synthesis of LL37 through SPPS assisted by microwave power. Standard conditions employing uronium coupling reagents was unsatisfactory from the 20th amino acid residue onwards. A segmentation approach revealed that the amide bond formation between the Val and Ile was identified as the problematic coupling. It was found that DIC/OxymaPure in conjunction with THF as the solvent gave best results during manual coupling of 20th position Ile and required double coupling as revealed by HPLC and MALDI-TOF MS. In order to verify the synthesis, antibacterial testing was carried out and the results revealed comparable values with that of literature reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

DCC:

N,N′-Dicyclohexylcarbodiimide

DIC:

N,N′-Diisopropylcarbodiimide

DIPEA:

N,N-Diisopropylethylamine

DMF:

N,N-Dimethylformamide

HATU:

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxidhexafluorophosphate

HBTU:

N-[(1H-Benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide

HOBt:

1-Hydroxybenzotriazole

PyBOP:

(Benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

References

  • Bacsa B, Desai B, Dibó G, Kappe CO (2006) Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J Pept Sci 12:633–638

    Article  CAS  PubMed  Google Scholar 

  • Bucki R, Pastore JJ, Randhawa P, Vegners R, Weiner DJ, Janmey PA (2004) Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob Agents Chemother 48:1526–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang C-M, Monie A, Wu A, Mao C-P, Hung C-F (2009) Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther 20:303–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffelt SB, Tomchuck SL, Zwezdaryk KJ, Danka ES, Scandurro AB (2009) Leucine Leucine-37uses formyl peptide receptor–like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells. Mol Cancer Res 7:907–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins JM, Leadbeater NE (2007) Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Collins JM, Porter KA, Singh SK, Vanier GS (2014) High-efficiency solid phase peptide synthesis (HE-SPPS). Org Lett 16:940–943

    Article  CAS  PubMed  Google Scholar 

  • de la Torre B, Jakab A, Andreu D (2007) Polyethyleneglycol-based resins as solid supports for the synthesis of difficult or long peptides. Int J Pept Res Ther 13:265–270

    Article  Google Scholar 

  • Erdelyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  • Fields GB, Angeletti RH, Bonewald LF, Moore WT, Smith AJ, Stults JT, Williams LC (1995) Correlation of cleavage techniques with side-reactions following solid-phase peptide synthesis. Academic Press, San Diego, pp 539–546

    Google Scholar 

  • Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem 17:548–550

    Article  CAS  PubMed  Google Scholar 

  • García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F (2006a) ChemMatrix, a poly (ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  Google Scholar 

  • García-Martín F, White P, Steinauer R, Côté S, Tulla-Puche J, Albericio F (2006b) The synergy of ChemMatrix resin® and pseudoproline building blocks renders rantes, a complex aggregated chemokine. Pept Sci 84:566–575

    Article  Google Scholar 

  • Gill K, Mohanti BK, Singh AK, Mishra B, Dey S (2011) The over expression of cathelicidin peptide LL37 in head and neck squamous cell carcinoma: The peptide marker for the prognosis of cancer. Cancer Biomark 10:125–134

    CAS  PubMed  Google Scholar 

  • Hachmann J, Lebl M (2006) Search for optimal coupling reagent in multiple peptide synthesizer. Pept Sci 84:340–347

    Article  CAS  Google Scholar 

  • Jad YE, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F (2014) Peptide synthesis beyond DMF: THF and ACN as excellent and greener alternatives. Org Bio Chem (in press)

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724

    Article  CAS  PubMed  Google Scholar 

  • Kajiya M, Shiba H, Komatsuzawa H, Ouhara K, Fujita T, Takeda K, Uchida Y, Mizuno N, Kawaguchi H, Kurihara H (2010) The antimicrobial peptide LL37 induces the migration of human pulp cells: a possible adjunct for regenerative endodontics. J Endodont 36:1009–1013

    Article  Google Scholar 

  • Kamysz E, Sikorska E, Karafova A, Dawgul M (2012) Synthesis, biological activity and conformational analysis of head-to-tail cyclic analogues of LL37 and histatin 5. J Pept Sci 18:560–566

    Article  CAS  PubMed  Google Scholar 

  • Kittaka M, Shiba H, Kajiya M, Fujita T, Iwata T, Rathvisal K, Ouhara K, Takeda K, Fujita T, Komatsuzawa H, Kurihara H (2013a) The antimicrobial peptide LL37 promotes bone regeneration in a rat calvarial bone defect. Peptides 46:136–142

    Article  CAS  PubMed  Google Scholar 

  • Kittaka M, Shiba H, Kajiya M, Ouhara K, Takeda K, Kanbara K, Fujita T, Kawaguchi H, Komatsuzawa H, Kurihara H (2013b) Antimicrobial peptide LL37 promotes vascular endothelial growth factor-A expression in human periodontal ligament cells. J Periodontal Res 48:228–234

    Article  CAS  PubMed  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Made V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212

    Article  PubMed Central  PubMed  Google Scholar 

  • Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71:3730–3739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murugan RN, Jacob B, Kim E-H, Ahn M, Sohn H, Seo J-H, Cheong C, Hyun J-K, Lee KS, Shin SY, Bang JK (2013) Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Bioorg Med Chem Lett 23:4633–4636

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy K, Albericio F, Arvidsson PI, Govender P, Kruger HG, Maguire GEM, Govender T (2010) Microwave assisted SPPS of amylin and its toxicity of the pure product to RIN-5F cells. Pept Sci 94:323–330

    Article  CAS  Google Scholar 

  • Nan YH, Bang J-K, Jacob B, Park I-S, Shin SY (2012) Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides 35:239–247

    Article  CAS  PubMed  Google Scholar 

  • Nilsson MF, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67:2561–2566

    Google Scholar 

  • Palasek SA, Cox ZJ, Collins JM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    Article  CAS  PubMed  Google Scholar 

  • Subiros-Funosas R, Khattab SN, Nieto-Rodriguez L, El-Faham A, Albericio F (2013) Advances in acylation methodologies enabled by oxyma-based reagents. Aldrichim Acta 46:21–40

    CAS  Google Scholar 

  • Subirós-Funosas R, Albericio F, El-Faham A (2009a) N-Hydroxylamines for peptide synthesis. PATAI’s Chemistry of Functional Groups, Wiley, New York, pp 1–108

    Google Scholar 

  • Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009b) Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403

    Article  PubMed  Google Scholar 

  • Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    Article  CAS  PubMed  Google Scholar 

  • Vanier G (2013) Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). In: Jensen KJ, Tofteng Shelton P, Pedersen SL (eds) Peptide Synthesis and Applications, vol 1047. Humana Press, Totowa, pp 235–249

    Chapter  Google Scholar 

  • Weber G, Chamorro C, Granath F, Liljegren A, Zreika S, Saidak Z, Sandstedt B, Rotstein S, Mentaverri R, Sanchez F, Pivarcsi A, Stahle M (2009) Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res 11:R6

    Article  PubMed Central  PubMed  Google Scholar 

  • Wehrstedt KD, Wandrey PA, Heitkamp D (2005) Explosive properties of 1-hydroxybenzotriazoles. J Hazard Mater 126:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wu WKK, Sung JJY, To KF, Yu L, Li HT, Li ZJ, Chu KM, Yu J, Cho CH (2010a) The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol 223:178–186

    CAS  PubMed  Google Scholar 

  • Wu WKK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, Wu K, Yu J, Sung JJY, Cho CH (2010b) Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int J Cancer 127:1741–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu HM, Chen ST, Wang KT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57:4781–4784

    Article  CAS  Google Scholar 

  • Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S, Crovella S, Tossi A (2006) Evolution of the primate cathelicidin—correlation between structural variations and antimicrobial activity. J Biol Chem 281:19861–19871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation, SA; Aspenpharmacare, SA; and the University of KwaZulu-Natal, Durban, SA for having funded this project. Authors declare no conflict of interest with the information contained in this work.

Conflict of interest

Authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thavendran Govender.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, J., Ramesh, S., Radebe, S.M. et al. Optimized Microwave Assisted Synthesis of LL37, a Cathelicidin Human Antimicrobial Peptide. Int J Pept Res Ther 21, 13–20 (2015). https://doi.org/10.1007/s10989-014-9439-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9439-3

Keywords

Navigation