Skip to main content

Advertisement

Log in

Comparative In-Vitro Functional Analysis of Synthetic Defensins and Their Corresponding Peptide Variants Against HIV-1NL4.3, E. coli, S. aureus and P. aeruginosa

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Defensins found in mammals belong to mainly two subfamilies α- and β-defensins. Mammalian defensins are small molecules (18–45 residues) that are cysteine, arginine rich compounds. Antimicrobial activities of these peptides were shown against a wide variety of microbes including bacteria, fungi, viruses and protozoan parasites. To investigate the structure and activity relationship, amino acid substitutions that alter charge were introduced into synthetic defensin peptides by adding 2–2 Arg (RR) and Asp (DD) at both the terminal and tested their effects on HIV-1, E. coli, S. aureus, and P. aeruginosa. In the present study, we have chemically synthesized native defensin peptides and their variants with Arg (RR) and Asp (DD) amino acid residues at N- and C-termini. Later, we assayed their anti-HIV, anti-microbial activities, stability, cytotoxicity and hemolytic properties. We reported that anti-HIV and antimicrobial activities of native defensins is increased significantly by adding Arg (RR) residues at both the termini while the substitution of Arg (RR) with Asp (DD), eliminate anti-HIV and antimicrobial activity against all bacterial species tested. While other physical features i.e. stability, cell toxicity and hemolytic property were not affected by any of the changes in the sequence. The results suggest that the terminal residues in defensins are crucial functional elements that determine their microbicidal potency. The enhanced microbicidal activity observed for defensin peptides with Arg (RR) residues could be due to optimization of amphiphilicity of the structure, which could facilitate specific interactions with the microbial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cociancich S, Ghazi A, Hetru C, Hofmann JA, Letellier LJ (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. Biol Chem 268:19239–19245

    CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM (2002) Retrocyclin: a primate peptides that protects cells from infection by T and M tropic strains of HIV-1. Proc Natl Acad Sci USA 99:1813–1818

    Article  PubMed  CAS  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  CAS  Google Scholar 

  • Hancock RWE (1999) MIC determination for cationic antimicrobial peptide by modified micro titer broth dilution method. Hancock Laboratory. http://cmdr.ubc.ca/bobh/methods/methodsall.html. Accessed June 2001.

  • Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251(5000):1481–1485

    Article  PubMed  CAS  Google Scholar 

  • Jasir A, Kasprzykowski F, Kasprzykowska R, Lindstrom V, Schalen C, Grubb A (2003) New antimicrobial cystatin C-based peptide active against Gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus and multiresistant coagulase-negative staphylococci. APMIS 111:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Jason EC, Donald PS, Yoshinori S, Andre JO, Vanderlick KT (2003) Electrostatically controlled interactions of mouse paneth cell α-defensins with phospholipid membranes. Aust J Chem 56:1031–1034

    Article  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 325:187–192

    Article  Google Scholar 

  • Kluver E, Maronde SS, Scheid S, Meyer B, Forssmann WG, Adermann K (2005) Structure activity relation of human β-defensin-3: influence of disulfide and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 94:9804–9816

    Article  Google Scholar 

  • Lauth X, Nesin A, Briand JP, Roussel JP, Hetru C (1998) Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochem Mol Biol 28(12):1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84(2):553–561

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 14:96–102

    Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Munk C, Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) The θ-defensin, retrocyclin inhibit HIV-1 entry. AIDS Res Hum Retroviruses 19:875–881

    Article  PubMed  Google Scholar 

  • Niyonsaba F, Someya A, Hirala M, Ogawa H, Nagooka I (2001) Evaluation of the effects of peptide antibiotics human β-defensins-1/2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur J Immunol 31:1066–1075

    Article  PubMed  CAS  Google Scholar 

  • Pardi A, Zhang XL, Selsted ME, Skalicky JJ, Yip PF (1992) NMR studies of defensin antimicrobial peptides. Biochemistry 31(46):11357–11364

    Article  PubMed  CAS  Google Scholar 

  • Periathamby AR, Kavitha JA, Thonthi K (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem J 347:633–641

    Article  Google Scholar 

  • Rao AG, Rood T, Maddox J, Duvick J (1992) Synthesis and characterization of defensin NP-1. Int J Pept Protein Res 40(6):507–514

    Article  PubMed  CAS  Google Scholar 

  • Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  PubMed  CAS  Google Scholar 

  • Salunke DB, Ravi DS, Pore VS, Mitra D, Hazra BG (2006) Amino functionalized novel cholic acid derivatives induce HIV-1 replication and syncytia formation in T cells. J Med Chem 49(8):2652–2655

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45(1):150–154

    PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    PubMed  CAS  Google Scholar 

  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an anti retroviral θ-defensin, is a lectin. J Immunol 170:4708–4716

    PubMed  CAS  Google Scholar 

  • White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5(4):521–527

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3(9):1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Young JD, Leong LG, DiNome MA, Cohn ZA (1986) A semi-automated hemolysis microassay fro membrane lytic proteins. Anal Biochem 154:649–654

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1997) The cathelicidin family of antimicrobial peptide precursors: a component of the oxygen-independent defense mechanisms of neutrophils. Ann N Y Acad Sci 832:147–162

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Dhillon P, Hancock REW (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3317–3321

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yu J, Lopez P, Fu S, Zhang W, Ho DD (2002) Contribution of human α-defensin-1, 2 and 3 to the anti HIV-1 activity of CD8 antiviral factor. Science 298:995–999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge ICMR-DBT, Govt. of India for providing financial assistance and carry out the work. Dr. Teena Mohan is thankful to UGC, Govt. of India for providing junior/senior research fellowship.

Conflict of interest

The authors declare no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, T., Mitra, D. & Rao, D.N. Comparative In-Vitro Functional Analysis of Synthetic Defensins and Their Corresponding Peptide Variants Against HIV-1NL4.3, E. coli, S. aureus and P. aeruginosa . Int J Pept Res Ther 19, 245–255 (2013). https://doi.org/10.1007/s10989-013-9345-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-013-9345-0

Keywords

Navigation