Skip to main content

Advertisement

Log in

Non-crossing weighted kernel quantile regression with right censored data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Regarding survival data analysis in regression modeling, multiple conditional quantiles are useful summary statistics to assess covariate effects on survival times. In this study, we consider an estimation problem of multiple nonlinear quantile functions with right censored survival data. To account for censoring in estimating a nonlinear quantile function, weighted kernel quantile regression (WKQR) has been developed by using the kernel trick and inverse-censoring-probability weights. However, the individually estimated quantile functions based on the WKQR often cross each other and consequently violate the basic properties of quantiles. To avoid this problem of quantile crossing, we propose the non-crossing weighted kernel quantile regression (NWKQR), which estimates multiple nonlinear conditional quantile functions simultaneously by enforcing the non-crossing constraints on kernel coefficients. The numerical results are presented to demonstrate the competitive performance of the proposed NWKQR over the WKQR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Programm 95:2

    Article  MathSciNet  MATH  Google Scholar 

  • Bang H, Tsiatis AA (2002) Median regression with censored cost data. Biometrics 55:643–649

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Huang J, Tian L (2009) Regularized estimation for the accelerated failure time model. Biometrics 65:394–404

    Article  MathSciNet  MATH  Google Scholar 

  • Cheong CW (2010) Estimating the Hurst parameter in financial time series via heuristic approaches. J Appl Stat 37:201–214

    Article  MathSciNet  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines (and other kernel-based learning methods). Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Friberg HA (2013) Rmosek: the R-to-MOSEK optimization interface. R package version 7.0.1. http://rmosek.r-forge.r-project.org/, http://www.mosek.com/

  • Gelius-Dietrich G (2013) cplexAPI: R interfact to C API of IBM ILOG CPLEX. R package version 1.2.9. http://cran.r-project.org/web/packages/cplexAPI

  • Hendricks W, Koenker R (1992) Hierarchical spline models for conditional quantiles and the demand for electricity. J Am Stat Assoc 87:58–68

    Article  Google Scholar 

  • Huang H, Haaland P, Lu X, Liu Y, Marron JS (2013) DWD: DWD implementation based on A IPM SOCP solver. R package version 0.11. http://CRAN.R-project.org/package=DWD

  • Huang J, Ma S, Xie H (2007) Least absolute deviations estimation for the accelerated failure time model. Stat Sin 17:1533–1548

    MathSciNet  MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 Package for Kernel Methods in R. J Stat Softw 11(9):1–20. http://www.jstatsoft.org/v11/i09/

  • Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33:82–95

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 4:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Geling R (2001) Reappraising medfly longevity: a quantile regression survival analysis. J Am Stat Assoc 96:458–468

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Hallock K (2001) Quantile regression. J Econ Perspect 15:143–156

    Article  Google Scholar 

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680

  • Koul H, Susarla V, Van Ryzin J (1981) Regression analysis with randomly right censored data. Ann Stat 9:1276–1288

    Article  MathSciNet  MATH  Google Scholar 

  • León LF, Cai T, Wei LJ (2009) Robust inferences for covariate effects on survival time with censored linear regression models. Stat Biosci 1:50–64

    Article  Google Scholar 

  • Li Y, Liu Y, Zhu J (2007) Quantile regression in reproducing kernel hilbert spaces. J Am Stat Assoc 102:255–268

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Wu Y (2011) Simultaneous multiple non-crossing quantile regression estimation using kernel constraints. J Nonparametr Stat 23:415–437

    Article  MathSciNet  MATH  Google Scholar 

  • Miller R, Halpern J (1982) Regression with censored data. Biometrika 69(3):521–531

    Article  MathSciNet  MATH  Google Scholar 

  • Park JY, Lee J-L, Baek S, Eo S-H, Ro JY, Cho YM (2014) Sarcomatoid features, necrosis, and grade are prognostic factors in metastatic clear cell renal cell carcinoma with vascular endothelial growth factor-targeted therapy. Hum Pathol 45(7):1437–1444

    Article  Google Scholar 

  • Portnoy S (2003) Censored regression quantiles. J Am Stat Assoc 98:1001–1012

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reich BJ, Fuentes M, Dunson DB (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106:6–20

    Article  MathSciNet  MATH  Google Scholar 

  • Scholkopf B, Smola A (2002) Learning with kernels support vector machines, regularization, optimization and beyond. MIT Press, Cambridge, MA

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

  • Shim J, Hwang C (2009) Support vector censored quantile regression under random censoring. Comput Stat Data Anal 53:912–919

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa SK, Pires JCM, Martins FG, Pereira MC, Alvim-Ferraz MCM (2008) Potentialities of quantile regression to predict ozone concentrations. Environmetrics 20:147–158

    Article  MathSciNet  Google Scholar 

  • Stute W (1993) Consistent estimation under random censorship when covariables are present. J Multivar Anal 45:89–103

    Article  MathSciNet  MATH  Google Scholar 

  • Takeuchi I, Le QV, Sears TD, Smola AJ (2006) Nonparametric quantile estimation. J Mach Learn Res 7:1231–1264

    MathSciNet  MATH  Google Scholar 

  • Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer, New York

    Book  MATH  Google Scholar 

  • Turlach B, Weingessel A (2013) quadprog: Functions to solve quadratic programming problems. R package version 1.5-5. http://CRAN.R-project.org/package=quadprog

  • Wang H, He X (2007) Detecting differential expressions in genechip microarray studies: a quantile approach. J Am Stat Assoc 102:104–112

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Wang L (2009) Locally weighted censored quantile regression. J Am Stat Assoc 104:1117–1128

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y, Liu Y (2009) Stepwise multiple quantile regression estimation using non-crossing constraints. Stat Interface 2:299–310

    Article  MathSciNet  MATH  Google Scholar 

  • Yang S (1999) Censored median regression using weighted empirical survival and hazard functions. J Am Stat Assoc 94:137–145

    Article  MathSciNet  MATH  Google Scholar 

  • Ying Z, Jung SH, Wei LJ (1995) Survival analysis with median regression models. J Am Stat Assoc 90:178–184

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data An 50:813–829

  • Zhou L (2006) A simple censored median regression estimator. Stat Sin 16:1043–1058

    MathSciNet  MATH  Google Scholar 

  • Zhou M (1992) M-estimation in censored linear models. Biometrika 79:837–841

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor, the associate editor, and the reviewers for their constructive and insightful comments and suggestions, which helped to dramatically improve the quality of this paper. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by (1) the Ministry of Science, ICT and Future Planning (NRF-2013R1A1A1007536) for S. Bang, (2) the Ministry of Education (NRF-2013R1A1A2A10007545) for M. Jhun, and (3) the Ministry of Education, Science and Technology (2010-0007936) for H. Cho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyungJun Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, S., Eo, SH., Cho, Y.M. et al. Non-crossing weighted kernel quantile regression with right censored data. Lifetime Data Anal 22, 100–121 (2016). https://doi.org/10.1007/s10985-014-9314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-014-9314-8

Keywords

Navigation