Skip to main content

Advertisement

Log in

A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The assessment of land-use impacts on biodiversity is one of the central themes of landscape ecology and conservation biology. However, due to the complexity of biodiversity, it is impossible to obtain complete information about the diversity of all species even for small areas, necessitating the selection of individual species or assemblages thereof as species surrogate. In parts of the world where taxonomic expertise is lacking, species identification has hindered progress in biodiversity conservation, and the only practical, relatively-accurate option, is the use of taxonomic minimalism.

Objective

We carried out a rapid biodiversity assessment based on three surrogates—land-use (driver-surrogate), terrestrial arthropods (species-surrogate) and morphospecies (taxonomic-surrogate)—to determine the impacts of land-use on biodiversity of the Western Region (Ghana), an area covering ~4 % of the West African biodiversity hotspot.

Method

We used diversity profiles to visualize the distribution of a total of 8848 arthropod individuals over seven land-use types which define the complete heterogeneity of the landscape.

Results

Here, we present both sample and asymptotic diversity profiles of arthropod morphospecies for each land-use type and the potential of each land-use type for conserving arthropods.

Conclusions

We conclude that (1) the morphospecies approach is useful for detecting differences in species diversity of land-use types; (2) the concept of asymptotic diversity may not be necessary for land-use based biodiversity comparison; and (3) maximum diversity profiles are useful for determining the land-use conservation values in cases where pristine areas are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390

    Article  Google Scholar 

  • Anyomi KA, Pelz DR, Kyereh B, Anglaaere LCN (2011) Influence of age and cropping system on tree population structure in South West Ghana. Afr J Agric Res 6(4):873–881

    Google Scholar 

  • Aquino J, Catala M, Carmona-Galindo VD (2013) Anthropogenic impacts of irrigation on the arthropod community structure of a coastal sage scrub habitat in Los Angeles. Bios 84(2):101–105

    Article  Google Scholar 

  • Baldock CKR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Pott SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc Lond B 282:20142849

    Article  Google Scholar 

  • Basset Y, Missa O, Alonso A, Miller SE, Curletti G, De Meyer M, Eardley CD, Mansell MW, Novotny V, Wagner T (2008) Faunal turnover of arthropod assemblages along a wide gradient of disturbance in Gabon. Afr Entomol 16(1):47–59

    Article  Google Scholar 

  • Bennett AB, Gratton C (2013) Floral diversity increases beneficial arthropod richness and decreases variability in arthropod community composition. Ecol Appl 23(1):86–95

    Article  PubMed  Google Scholar 

  • Bennett EM, Cramer W, Begossi A, Cundill G, Díaz S, Egoh BN, Lebel L (2015) Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr Opin Environ Sustainability 14:76–85

    Article  Google Scholar 

  • Bertone MA, Leong M, Bayless KM, Malow TLF, Dunn RR, Trautwein MD (2016) Arthropods of the great indoors: characterizing diversity inside urban and suburban homes. PeerJ 4:e1582

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AK, Gurevitch J (2004) Long-term impact of logging on forest diversity in Madagascar. Proc Natl Acad Sci USA 101(16):6045–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz S, Schirmel J, Siewers J (2014) The efficiency of pitfall traps as a method of sampling epigeal arthropods in litter rich forest habitats. Eur J Entomol 111(1):69–74

    Article  Google Scholar 

  • Bull JW, Milner-Gulland EJ, Suttle KB, Singh NJ (2014) Comparing biodiversity offset calculation methods with a case study in Uzbekistan. Biol Conserv 178:2–10

    Article  Google Scholar 

  • Caro T (2010) Conservation by proxy: indicator, umbrella, keystone and other surrogate species. Island Press, Washington, DC

    Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93(12):2533–2547

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67

    Article  Google Scholar 

  • Chen Y, Randerson JT, Van de Werf GR, Morton DC, Mu M, Kasibhatla PS (2010) Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob Change Biol 16:2024–2038

    Article  Google Scholar 

  • Cotes B, Ruano F, García PA, Pascual F, Campos M (2009) Coccinellid morphospecies as an alternative method for differentiating management regimes in olive orchards. Ecol Indic 9:548–555

    Article  Google Scholar 

  • Cranston PS (1990) Biomonitoring and invertebrate taxonomy. Environ Monit Assess 14:265–273

    Article  CAS  PubMed  Google Scholar 

  • Dagobert KK, Klimaszewski J, Mamadou D, Daouda A, Mamadou D (2008) Comparing beetle abundance and diversity values along a land use gradient in tropical Africa (Oumé, Ivory Coast). Zool Stud 47(4):429–437

    Google Scholar 

  • De Baan L, Curran M, Rondinini C, Visconti P, Hellweg S, Koellner T (2015) High-resolution assessment of land-use impacts on biodiversity in life cycle assessment using species habitat suitability models. Environ Sci Technol 49:2237–2244

    Article  PubMed  Google Scholar 

  • Deguines N, Julliard R, de Flores M, Fontaine C (2012) The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS One 7(9):1–9

    Article  Google Scholar 

  • Derraik JGB, Closs GP, Dickinson KJM, Sirvid P, Barratt BIP, Patrick BH (2002) Arthropod morphospecies verses taxonomic species: a case study with Araneae, Coleoptera and Lepidoptera. Conserv Biol 16(4):1015–1023

    Article  Google Scholar 

  • Díaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, Larigauderie A, Adhikari JR, Arico S, Báldi A, Bartuska A (2015) The IPBES conceptual framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16

    Article  Google Scholar 

  • Dickson KB (1969) A historical geography of Ghana. Cambridge University Press, London

    Google Scholar 

  • Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agric Ecosyst Environ 62(2–3):81–91

    Article  Google Scholar 

  • Duelli P, Chumak V, Obrist MK, Virz P (2005) Biodiversity values of European virgin forests. For Snow Landsc Res 79(1):91–99

    Google Scholar 

  • Emmel TC, Larsen TB (1997) Butterfly diversity in Ghana. West Africa. Trop Lepidoptera 8(suppl. 3):1–13

    Google Scholar 

  • Ferrarini A (2012) Betterments to biodiversity optimal sampling. Proc Int Acad Ecol Environ Sci 2(4):246–250

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309:570–573

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

  • Geohring DM, Daily GC, Sekercioglu CH (2002) Distribution of ground-dwelling arthropod in tropical countryside habitats. J Insect Conserv 6:83–91

    Article  Google Scholar 

  • Ghana Statistical Service (2013) 2010 Population and housing census: national analytical report. Ghana Statistical Service, Ghana

    Google Scholar 

  • Goldstein PZ (1997) How many things are there? A reply to Oliver and Beattie, Beattie and Oliver, Oliver and Beattie, and Oliver and Beattie. Conserv Biol 11(2):571–574

    Article  Google Scholar 

  • Hackman KO (2014) The state of biodiversity in Ghana, knowledge gaps and prioritization. Int J Biodivers Conserv 6(9):681–701

    Article  Google Scholar 

  • Hackman KO (2015) A method for assessing land-use impacts on biodiversity in a landscape. Glob Conserv Ecol 3:83–89

    Article  Google Scholar 

  • Hill M (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427–432

    Article  Google Scholar 

  • Hurlbert SH (1971) The Nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113(2):363–375

    Article  Google Scholar 

  • Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16:65–76

    Article  Google Scholar 

  • Krell F-T (2004) Parataxonomy vs. taxonomy in biodiversity studies—pitfalls and applicability of ‘morphospecies’ sorting. Biodivers Conserv 13(4):795–812

    Article  Google Scholar 

  • Laurance WF (2004) Rapid land-use change and its impacts on tropical biodiversity. Geophysical monograph series, vol 153

  • Leinster T, Cobbold CA (2012) Measuring diversity: an importance of species similarity. Ecology 93(3):477–489

    Article  PubMed  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Milne RJ, Bennett LP (2007) Biodiversity and ecological value of conservation lands in agricultural landscapes of southern Ontario, Canada. Landscape Ecol 22:657–670

    Article  Google Scholar 

  • Ministry of food and agriculture (2011) Agriculture in Ghana: facts and figures 2010. Ministry of Food and Agriculture, Accra

    Google Scholar 

  • Moore BA (2005) Alien invasive species: impacts on forests and forestry—a review. Forest resources development service working paper FBS/8E. Forest Resources Division FAO, Rome

  • Nadkarni NM, Longino JT (1990) Invertebrates in canopy and ground organic matter in a neotropical montane forest, Costa Rica. Biotropica 22(3):286–289

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–69

    Article  CAS  PubMed  Google Scholar 

  • Niemelä J, Kotze J, Ashworth A, Brandmayr P, Desender K, New T, Penev L, Samways M, Spence J (2000) The search for common anthropogenic impacts on biodiversity: a global network. J Insect Conserv 4:3–9

    Article  Google Scholar 

  • Nyame SK, Okai M, Adeleke A, Fisher B (2012) Small changes for big impacts: lessons for landscapes and livelihoods from the Wassa Amenfi West Landscape, Ghana. IUCN, Gland

    Google Scholar 

  • Obrist MK, Duelli P (2010) Rapid biodiversity assessment of arthropods for monitoring average local species richness and related ecosystem services. Biodivers Conserv 19(8):2201–2220

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1993) A possible method for rapid assessment of biodiversity. Conserv Biol 7(3):562–568

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1995) Reply from A.J. Beattie and I. Oliver. Trends Ecol Evol 10(5):203–204

    Article  PubMed  Google Scholar 

  • Oliver I, Beattie AJ (1996a) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10(1):99–109

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996b) Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecol Appl 6(2):594–607

    Article  Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Clim Change 5:317–335

    Article  Google Scholar 

  • Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K (2015) Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm Policy Ment Health Ment Health Serv Res 42(5):533–544

    Article  Google Scholar 

  • Rödel M-O, Gil M, Agyei AC, Leaché AD, Diaz RE, Fujita MK, Ernst R (2005) The amphibians of the forested parts of south-western Ghana. Salamandra, Rheinbach 41(3):107–127

    Google Scholar 

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737

    Article  Google Scholar 

  • Skidmore AK, Pettorelli N, Coops NC, Geller GN, Hansen M, Lucas R, Mücher CA, O’Connor B, Paganini M, Pereira HM, Schaepman ME, Turner W, Wang T, Wegmann M (2015) Environmental science: agree on biodiversity metrics to track from space. Nature 523(7561):403–405

    Article  CAS  PubMed  Google Scholar 

  • Stamps WT, Linit MJ (1998) Plant diversity and arthropod communities: implications for temperate agroforestry. Agrofor Syst 39:79–88

    Google Scholar 

  • Timms LL, Bowden JJ, Summerville KS, Buddle CM (2013) Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv Divers 6:453–462

    Article  Google Scholar 

  • Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6(2):283–290

    Article  Google Scholar 

  • Tuomisto H (2012) An updated consumer’s guide to evenness and related indices. Oikos 121:1203–1218

    Article  Google Scholar 

  • Vitcu A, Lungu E, Vitcu L, Marcu A (2007) Multi-stage maximum variation sampling in health promotion programs’ evaluation. J Prev Med 15:5–18

    Google Scholar 

  • Ward DF, New TR, Yen AL (2001) Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. J Insect Conserv 5:47–53

    Article  Google Scholar 

  • Wardhuagh CW (2014) The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev 89(4):1021–1041

    Article  Google Scholar 

  • Wu J (2013) Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landscape Ecol 28:1–11

    Article  CAS  Google Scholar 

  • Zettler JA, Taylor MD, Allen CR, Spira TP (2004) Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 97(3):513–518

    Article  Google Scholar 

Download references

Acknowledgments

Primary support for Kwame Oppong Hackman came from a research Grant from Tsinghua University research (Grant Number 2012Z02287). The authors wish to acknowledge the support of Messrs John Nuapa Aidoo and Isaac Darko who offered great support during the collection and classification of data. We also thank the Ghana Forestry Commission (GFC) for granting access to the Subri River and Krokosua forest reserves and also to the GFC staff at Daboase and Juaboso for their support in identifying and setting up experiments in suitable areas of the reserves. We would like to thank two anonymous reviewers whose constructive comments and suggestions helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwame O. Hackman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A1

Description of collection sites. Detailed description of sites of collection (DOCX 7318 kb)

Appendix A2

Proof of Equation 2. A short proof of equation 2 (DOCX 12 kb)

Appendix A3

Matlab codes. M-files (Matlab scripts) for computing the diversities and plotting the diversity profiles (TXT 7 kb)

Appendix A4

Diversity profile plots. Plots of non-asymptotic and asymptotic diversity profiles for each type of land-use (ZIP 965 kb)

Appendix A5

Ecological data. Arthropod morphospecies data for each land-use type and for each trap type (including pooled data) (ZIP 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackman, K.O., Gong, P. & Venevsky, S. A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies. Landscape Ecol 32, 209–223 (2017). https://doi.org/10.1007/s10980-016-0440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0440-4

Keywords

Navigation