Skip to main content
Log in

Spatial scale and pattern dependences of aboveground biomass estimation from satellite images: a case study of the Sierra National Forest, California

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Spatial scale and pattern play important roles in forest aboveground biomass (AGB) estimation in remote sensing. Changes in the accuracy of satellite images-estimated forest AGBs against spatial scales and pixel distribution patterns has not been evaluated, because it requires ground-truth AGBs of fine resolution over a large extent, and such data are difficult to obtain using traditional ground surveying methods.

Objectives

We intend to quantify the accuracy of AGB estimation from satellite images on changing spatial scales and varying pixel distribution patterns, in a typical mixed coniferous forest in Sierra Nevada mountains, California.

Methods

A forest AGB map of a 143 km2 area was created using small-footprint light detection and ranging. Landsat Thematic Mapper images were chosen as typical examples of satellite images, and resampled to successively coarser resolutions. At each spatial scale, pixels forming random, uniform, and clustered spatial patterns were then sampled. The accuracies of the AGB estimation based on Landsat images associated with varying spatial scales and patterns were finally quantified.

Results

The changes in the accuracy of AGB estimation from Landsat images are not monotonic, but increase up to 60–90 m in spatial scale, and then decrease. Random and uniform spatial patterns of pixel distributions yield better accuracy for AGB estimation than clustered spatial patterns. The corrected NDVI (NDVIc) was the best predictor of AGB estimation.

Conclusions

A spatial scale of 60–90 m is recommended for forest AGB estimation at the Sierra Nevada mountains using Landsat images and those with similar spectral resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asner GP (2009) Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett 4(3):4–11

    Article  Google Scholar 

  • Birth GS, McVey GR (1968) Measuring the color of growing turf with a reflectance spectrophotometer. Agron J 60(6):640–643

    Article  Google Scholar 

  • Blackard JA, Finco MV, Helmer EH, Holden GR, Hoppus ML, Jacobs DM, Lister AJ, Moisen GG, Nelson MD, Riemann R, Ruefenacht B (2008) Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112(4):1658–1677

    Article  Google Scholar 

  • Boyd DS (1999) The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 μm). Int J Remote Sens 20(5):1017–1023

    Article  Google Scholar 

  • Boyd DS, Foody GM, Curran PJ, Lucas RM, Honzak M (1996) An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. Int J Remote Sens 17(2):249–261

    Article  Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • Chave J (2013) The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol Lett 16:4–16

    Article  PubMed  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20(10):3177–3190

    Article  PubMed  Google Scholar 

  • Chen Q (2007) Airborne lidar data processing and information extraction. Photogramm Eng Remote Sens 73(2):109

    Article  Google Scholar 

  • Chen Q (2010) Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens Environ 114(7):1610–1627

    Article  Google Scholar 

  • Collins BM, Stephens SL, Roller GB, Battles JJ (2011) Simulating fire and forest dynamics for a landscape fuel treatment project in the Sierra Nevada. For Sci 57(2):77–88

    Google Scholar 

  • De Wulf RR, Goossens RE, de Roover BP, Borry FC (1990) Extraction of forest stand parameters from panchromatic and multispectral SPOT-1 data. Int J Remote Sens 11(9):1571–1588

    Article  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525):2320–2322

    Article  CAS  PubMed  Google Scholar 

  • Fazakas Z, Nilsson M, Olsson H (1999) Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agric For Meteorol 98:417–425

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler ME (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85(4):463–474

    Article  Google Scholar 

  • Foody GM, Mathur A (2004) Toward intelligent training of supervised image classifications directing training data acquisition for SVM classification. Remote Sens Environ 93(1):107–117

    Article  Google Scholar 

  • Franklin J (1986) Thematic Mapper analysis of coniferous forest structure and composition. Int J Remote Sens 7(10):1287–1301

    Article  Google Scholar 

  • Franklin S, McDermid G (1993) Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters. Int J Remote Sens 14(12):2331–2348

    Article  Google Scholar 

  • Fransson J, Smith G, Askne J, Olsson H (2001) Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data. Int J Remote Sens 22(14):2777–2791

    Article  Google Scholar 

  • Gleason CJ, Im J (2011) A review of remote sensing of forest biomass and biofuel: options for small-area applications. GI Sci Remote Sens 48(2):141–170

    Article  Google Scholar 

  • Hall R, Skakun R, Arsenault E, Case B (2006) Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manag 225(1):378–390

    Article  Google Scholar 

  • Hame T, Salli A, Andersson K, Lohi A (1997) A new methodology for the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data. Int J Remote Sens 18(15):3211–3243

    Article  Google Scholar 

  • Heiskanen J (2006) Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int J Remote Sens 27(6):1135–1158

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Hyyppä HJ, Hyyppä JM (2001) Effects of stand size on the accuracy of remote sensing-based forest inventory. IEEE Trans Geosci Remote Sens 39(12):2613–2621

    Article  Google Scholar 

  • Hyyppä J, Hyyppä H, Inkinen M, Engdahl M, Linko S, Zhu Y-H (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manag 128(1):109–120

    Article  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35

    Google Scholar 

  • Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50:663–666

    Article  Google Scholar 

  • Kauth RJ, Thomas G (1976) The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: LARS symposia, West Lafayette, p 159

  • Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens 65(6):581–590

    Article  Google Scholar 

  • Labrecque S, Fournier R, Luther J, Piercey D (2006) A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For Ecol Manag 226(1):129–144

    Article  Google Scholar 

  • Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115(11):2850–2860

    Article  Google Scholar 

  • Lefsky MA, Cohen W, Acker S, Parker GG, Spies T, Harding D (1999) Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens Environ 70(3):339–361

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11(5):393–399

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Li L, Guo Q, Tao S, Kelly M, Xu G (2015) Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass. ISPRS J Photogramm Remote Sens 102:198–208

    Article  Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27(1):88–106

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26(12):2509–2525

    Article  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328

    Article  Google Scholar 

  • Lu D, Chen Q, Wang G, Moran E, Batistella M, Zhang M, Vaglio Laurin G, Saah D (2012) Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int J For Res. doi:10.1155/2012/436537

    Google Scholar 

  • Lu D, Mausel P, Brondızio E, Moran E (2004) Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manag 198(1):149–167

    Article  Google Scholar 

  • Marvin DC, Asner GP, Knapp DE, Anderson CB, Martin RE, Sinca F, Tupayachi R (2014) Amazonian landscapes and the bias in field studies of forest structure and biomass. Proc Natl Acad Sci 111(48):E5224–E5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MathWorks Inc. (2013) MATLAB version 8.2.0., Natick, Massachusetts

  • Mitchard ET, Saatchi SS, Woodhouse IH, Nangendo G, Ribeiro NS, Williams M, Ryan CM, Lewis SL, Feldpausch TR, Meir P (2009) Using satellite radar backscatter to predict above-ground woody biomass: a consistent relationship across four different African landscapes. Geophys Res Lett 36(23):L23401

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2005) Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sens Environ 99(4):434–447

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2007) Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories. Remote Sens Environ 107(4):617–624

    Article  Google Scholar 

  • Nemani R, Pierce L, Running S, Band L (1993) Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates. Int J Remote Sens 14(13):2519–2534

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Article  CAS  PubMed  Google Scholar 

  • Phillips LB, Hansen AJ, Flather CH (2008) Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens Environ 112(12):4381–4392

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete A, Kerr Y, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126

    Article  Google Scholar 

  • Rock B, Vogelmann J, Williams D, Vogelmann A, Hoshizaki T (1986) Remote detection of forest damage. BioScience 36:439–445

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107

    Article  Google Scholar 

  • Rouse Jr JW, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS symposium, NASA SP-351, Washington, pp 309–317

  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Article  Google Scholar 

  • Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ 115(4):968–977

    Article  Google Scholar 

  • Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res. doi:10.1029/2009JG000993

    Google Scholar 

  • Soenen SA, Peddle DR, Hall RJ, Coburn CA, Hall FG (2010) Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ 114(7):1325–1337

    Article  Google Scholar 

  • Steininger M (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21(6–7):1139–1157

    Article  Google Scholar 

  • Tao S, Guo Q, Li L, Xue B, Kelly M, Li W, Xu G, Su Y (2014) Airborne Lidar-derived volume metrics for aboveground biomass estimation: a comparative assessment for conifer stands. Agric For Meteorol 198:24–32

    Article  Google Scholar 

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manag 97(1):1–24

    Article  Google Scholar 

  • Tomppo E, Katila M (1991) Satellite image-based national forest inventory of Finland. Int Arch Photogramm Remote Sens 28:419–424

    Google Scholar 

  • Trotter C, Dymond J, Goulding C (1997) Estimation of timber volume in a coniferous plantation forest using Landsat TM. Int J Remote Sens 18(10):2209–2223

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecol 3(3–4):153–162

    Article  Google Scholar 

  • Waddell KL, Hiserote BA, Inventory F (2005) The PNW-FIA integrated database user guide: a database of forest inventory information for California, Oregon, and Washington. Forest Inventory & Analysis Program, Pacific Northwest Station, Portland, Oregon

    Google Scholar 

  • Wang SP, Loreau M (2014) Ecosystem stability in space: alpha, beta and gamma variability. Ecol Lett 17(8):891–901

    Article  PubMed  Google Scholar 

  • Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21(3):311–332

    Article  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17(8):761–782

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bresee M, Le Moine J, Ryu SR (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93(3):402–411

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grants Nos. 41471363 and 41401505), the National Key Basic Research Program of China (2013CB956604), and the Sierra Nevada Adaptive Management Project (SNMAP). We are grateful for the constructive comments from the anonymous reviewers of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Guo, Q., Wu, F. et al. Spatial scale and pattern dependences of aboveground biomass estimation from satellite images: a case study of the Sierra National Forest, California. Landscape Ecol 31, 1711–1723 (2016). https://doi.org/10.1007/s10980-016-0357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0357-y

Keywords

Navigation