Skip to main content
Log in

A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Radiation is one of the primary influences on vegetation composition and spatial pattern. Topographic orientation is often used as a proxy for relative radiation load due to its effects on evaporative demand and local temperature. Common methods for incorporating this information (i.e., site measures of slope and aspect) fail to include daily or annual changes in solar orientation and shading effects from local topography. As a result, these static measures do not incorporate the level of spatial and temporal heterogeneity required to examine vegetation patterns at the landscape level. We developed a widely applicable method for estimating potential relative radiation (PRR) using digital elevation data and a widely used geographic information system (Arc/Info). We found significant differences among four increasingly comprehensive radiation proxies. Our GIS-based proxy compared well with estimates from more data-intensive and computationally rigorous radiation models. We note that several recent studies have not found strong correlations between vegetation pattern and landscape-scale differences in radiation. We suggest that these findings may be due to the use of proxies that were not accurately capturing variability in radiation, and we recommend PRR or similar measures for use in future vegetation analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.P. Austin A.O. Nicholls C.R. Margules (1990) ArticleTitleMeasurement of the Realized Qualitative Niche: Environmental Niches of Five Eucalyptus Species Ecological Monographs 60 161–177

    Google Scholar 

  • L.E. Band D.L. Peterson S.W. Running J. Coughlan R. Lammers J. Dungan R. Nemani (1991) ArticleTitleForest ecosystem process at the watershed scale: basis for distributed simulation Ecological Modelling 56 171–196

    Google Scholar 

  • T.W. Beers P.E. Press L.C. Wensel (1966) ArticleTitleAspect transformation in site productivity research Journal of Forestry 64 691–692

    Google Scholar 

  • P. Bolstad W. Swank J. Vose (1998) ArticleTitlePredicting southern Appalachian overstory vegetation with digital terrain data Landscape Ecology 13 695–707

    Google Scholar 

  • G.B. Bonan (1988) Environmental processes and vegetation patterns in boreal forests Ph.D. Thesis University of VirginiaCharlottesvilleVirginiaUSA

    Google Scholar 

  • D.G. Brown (1994) ArticleTitlePredicting vegetation types at treeline using topography and biophysical disturbance variables Journal of Vegetation Science 5 641–656

    Google Scholar 

  • A.G. Bunn R.L. Lawrence G.J. Bellante L.A. Waggoner L.J. Graumlich (2003) ArticleTitleSpatial variation in distribution and growth patterns of old growth strip-bark pines Arctic, Antarctic and Alpine Research 35 323–330

    Google Scholar 

  • R.M. Callaway E.E.C. Clebsch P.S. White (1998) ArticleTitleA Multivariate analysis of forest communities in the western Great Smoky Mountains national park American Midland Naturalist 118 107–118

    Google Scholar 

  • G.S. Campbell J.M. Norman (1998) An Introduction to Environmental Biophysics Springer New Jersey, USA

    Google Scholar 

  • J. Chen S.C. Saunders T.R. Crow R.J. Naiman K.D. Brosofske G.D. Mroz B.L. Brookshire J.F. Franklin (1999) ArticleTitleMicroclimate in forest ecosystem and landscape ecology Bioscience 49 288–97

    Google Scholar 

  • B.D. Clinton L.R. Boring W.T. Swank (1994) ArticleTitleRegeneration patterns in canopy gaps of mixed-oak forests of the Southern Appalachians: Influences of topographic position and evergreen understory American Midland Naturalist 132 308–319

    Google Scholar 

  • C. Daly R.P. Neilson D.L. Phillips (1994) ArticleTitleA statistical-topographic model for mapping climatological precipitation over mountainous terrain Journal of Applied Meteorology 33 140–158

    Google Scholar 

  • F.W. Davis. S. Goetz (1990) ArticleTitleModeling vegetation pattern using digital terrain data Landscape Ecology 4 69–80

    Google Scholar 

  • F.P. Day C.D. Monk (1974) ArticleTitleVegetation patterns on a southern Appalachian watershed Ecology 55 1064–1074

    Google Scholar 

  • J.A. Donnegan. A.J. Rebertus (1999) ArticleTitleRates and mechanisms of subalpine forest succession along an environmental gradient Ecology 80 1370–1384

    Google Scholar 

  • J. Dozier J. Frew (1990) ArticleTitleRapid calculation of terrain parameters for radiation modeling from digital elevation data IEEE Transaction on Geoscience and Remote Sensing 28 963–969

    Google Scholar 

  • R.C. Dubayah (1994) ArticleTitleModeling a solar radiation topoclimatology for the Rio Grande River Basin Journal of Vegetation Science 5 627–640

    Google Scholar 

  • R. Dubayah P.M. Rich (1995) ArticleTitleTopographic solar radiation models in GIS International Journal of Geographical Information Systems 9 405–419

    Google Scholar 

  • C.T. Dyrness J.F. Franklin W.H. Moir (1974) A preliminary classification of forest communities in the central portion of the Western Cascades in Oregon Forestry Sciences Laboratory USDA Forest ServiceCorvallis, Oregon, USA

    Google Scholar 

  • InstitutionalAuthorNameESRI, ARC/Info 7 (1994) Environmental Systems Research Institute Inc Redlands, CAUSA

    Google Scholar 

  • Frank E.C., Lee R. 1966. Potential solar beam irradiation on slopes: tables for 30 to 50 latitude. Rocky Mountain Forest Range Experiemental Station, Fort Collins, Colorado. Forest Service Research Paper RM-18 U.S.D.A. Forest Service.

  • J. Franklin (1998) ArticleTitlePredicting the distribution of shrub species in southern California from climate and terrain-derived variables Journal of Vegetation Science 9 733–748

    Google Scholar 

  • J.F. Franklin Dyrness. C.T. (1988) Natural vegetation of Oregon and Washington Oregon State University Press Corvallis, Oregon, USA

    Google Scholar 

  • J. Franklin P. McCullough C. Gray (2000) Terrain variables used for predictive mapping of vegetation communities in Southern California. J.P. Wilson J.C. Gallant (Eds) Terrain Analysis: Principle and Applications John Wiley and Sons New York, New York USA 331–354

    Google Scholar 

  • P. Fu P.M. Rich (1999) Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales Proceedings of the 19th Annual ESRI User Conference San DiegoUSA

    Google Scholar 

  • R.J. Geiger (1965) The Climate Near the Ground Harvard University Press CambridgeMassachusetts, USA

    Google Scholar 

  • Greenland D. 1996. Potential solar radiation at the H J. Andrews experimental forest. Pacific Northwest Research Station, EugeneOregon, Interim Report PNW 93-0477, U.S.D.A. Forest Service.

  • C.C. Grier R.S. Logan (1977) ArticleTitleOld-growth Pseudotsuga menziesi communities of a western Oregon watershed: biomass distribution and production budgets Ecological Monographs 47 373–400

    Google Scholar 

  • A. Guisan J. Theurillat F. Kienast (1998) ArticleTitlePredicting the potential distribution of plant species in an alpine environment Journal of Vegetation Science 9 65–74

    Google Scholar 

  • S.R. Kessell (1979) Gradient Modeling: Resource and Fire Management Springer-Verlag New York, New York USA

    Google Scholar 

  • S.A. Klein (1977) ArticleTitleCalculation of monthly average insolation on tilted surfaces Solar Energy 19 325–329

    Google Scholar 

  • T. Lookingbill D. Urban (2003) ArticleTitleSpatial estimation of air temperature differences for landscape-scale studies in montane environments Agricultural and Forest Meteorology 114 141–151

    Google Scholar 

  • T. Lookingbill D. Urban (2004) ArticleTitleAn empirical approach towards improved spatial estimates of soil moisture for vegetation analysis Landscape Ecology 19 417–433

    Google Scholar 

  • B.G. Mackey I.C. Mullen K.A. Baldwin J.C. Gallant R.A. Sims D.W. McKenney (2000) Towards a spatial model of boreal forest ecosystems: The role of digital terrain analysis. J.P Wilson J.C. Gallant (Eds) Terrain Analysis: Principle and Applications John Wiley and Sons New York, New York USA 391–427

    Google Scholar 

  • D.H. McCay M.D. Abrams T.E. DeMeo (1997) ArticleTitleGradient analysis of secondary forests of eastern West Virginia Journal of the Torrey Botanical Society 124 160–173

    Google Scholar 

  • D.W. McKenney B.G. Mackey B.L. Zavitz (1999) ArticleTitleCalibration and sensitivity analysis of a spatially-distributed solar radiation model International Journal of Geographical Information Science 13 49–65

    Google Scholar 

  • C. Miller D.L. Urban (1999) ArticleTitleA model of surface fireclimate and forest pattern in the Sierra NevadaCalifornia Ecological Modelling 114 113–135 Occurrence Handle1:CAS:528:DyaK1cXotVyluro%3D

    CAS  Google Scholar 

  • N.T. Nikolov K.F. Zeller (1992) ArticleTitleA solar radiation algorithm for ecosystem dynamic models Ecological Modelling 61 149–168

    Google Scholar 

  • A.D. Park (2001) ArticleTitleEnvironmental influences on post-harvest natural regeneration in mexican pine-oak forests Forest Ecology and Management 144 213–228

    Google Scholar 

  • A.J. Parker (1995) ArticleTitleComparative gradient structure and forest cover types in Lassen Volcanic and Yosemite National Parks, California Bulletin of the Torrey Botanical Society 122 58–68

    Google Scholar 

  • P.H. Raven R.F. Evert S.E. Eichhorn (1992) Biology of Plants Worth Publishers New York, New York USA

    Google Scholar 

  • S.W. Running R.R. Nemani R.D. Hungerford (1987) ArticleTitleExtrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis Canadian Journal of Forest Research 17 472–483

    Google Scholar 

  • J. Smith (2002) Mapping the Thermal Climate of the H J. Andrews Experimental Forest Oregon. M.S. Thesis, Oregon State University, Corvallis, Oregon, USA

    Google Scholar 

  • N.L. Stephenson (1998) ArticleTitleActual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales Journal of Biogeography 25 855–870

    Google Scholar 

  • Stephenson N.L., Parsons D.J. 1993. A research program for predicting the effects of climate change on the Sierra Nevada. Viers S.D. Jr., Stohlgren T.J. and Schonewal-Cox C. (eds), Proceedings of the Fourth Conference on Research in California’s National Parks. USDI Park Service Transactions and Proceedings Series 9, Denver Colorado pp. 93–109.

  • F.J. Swanson T.K. Kratz N. Caine R.G. Woodmansee (1988) ArticleTitleLandform effects on ecosystem patterns and processes Bioscience 38 92–98

    Google Scholar 

  • P.E. Thornton S.W. Running M.A. White (1997) ArticleTitleGenerating surfaces of daily meteorological variables over large regions of complex terrain Journal of Hydrology 190 214–251

    Google Scholar 

  • D.L. Urban C. Miller P.N. Halpin N.L. Stephenson (2000) ArticleTitleForest gradient response in Sierran landscapes: the physical template Landscape Ecology 15 603–620

    Google Scholar 

  • J.L. Vankat J. Major (1978) ArticleTitleVegetation changes in Sequoia National Park, California Journal of Biogeography 5 377–402

    Google Scholar 

  • J.P. Wilson J.C. Gallant (2000) Secondary topographic attributes. J.P. Wilson J.C. Gallant (Eds) Terrain Analysis: Principle and Applications John Wiley and Sons New York, New York USA 97–132

    Google Scholar 

  • R.H. Whittaker (1956) ArticleTitleVegetation of the Great Smoky Mountains Ecological Monographs. 26 1–80

    Google Scholar 

  • R.H. Whittaker (1960) ArticleTitleVegetation of the Siskiyou Mountains, Oregon and California Ecological Monographs 30 279–338

    Google Scholar 

  • J.A. Yeakley W.T. Swank L.W. Swift G.M. Hornberger H.H. Shugart (1998) ArticleTitleSoil moisture gradients and controls on a southern Appalachian hillslope from drought through recharge Hydrology and Earth System Sciences 2 41–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Pierce Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, K., Lookingbill, T. & Urban, D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol 20, 137–147 (2005). https://doi.org/10.1007/s10980-004-1296-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-004-1296-6

Keywords

Navigation