Skip to main content
Log in

Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle CaV1.1 calcium channel splice variants

  • EMC2011 Special Issue
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel CaV1.1 is the exception. The classical splice variant CaV1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel CaV1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. CaV1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting CaV1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical CaV1.1a channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahern CA, Powers PA, Biddlecome GH, Roethe L, Vallejo P, Mortenson L, Strube C, Campbell KP, Coronado R, Gregg RG (2001) Modulation of l-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC Physiol 1:8

    Article  PubMed  CAS  Google Scholar 

  • Andronache Z, Ursu D, Lehnert S, Freichel M, Flockerzi V, Melzer W (2007) The auxiliary subunit gamma 1 of the skeletal muscle l-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci USA 104(45):17885–17890. doi:10.1073/pnas.0704340104

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla FM, Horowicz P (1972) Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N′-tetraacetic acid. Biochim Biophys Acta 267(3):605–608

    Article  PubMed  CAS  Google Scholar 

  • Bannister RA, Beam KG (2009) The cardiac alpha (1C) subunit can support excitation-triggered Ca2+ entry in dysgenic and dyspedic myotubes. Channels (Austin) 3(4):268–273

    Google Scholar 

  • Bannister RA, Pessah IN, Beam KG (2009) The skeletal l-type Ca (2+) current is a major contributor to excitation-coupled Ca (2+) entry. J Gen Physiol 133(1):79–91. doi:10.1085/jgp.200810105

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Tsien RW (2008) The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 l-type calcium channels. Proc Natl Acad Sci USA 105(6):2157–2162. doi:10.1073/pnas.0710501105

    Article  PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107(6 Pt 2):2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67(6):915–928. doi:10.1016/j.neuron.2010.08.021

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004) Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 429(6992):675–680. doi:10.1038/nature02641

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W (2011) Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci 14(5):570–577. doi:10.1038/nn.2792

    Article  PubMed  CAS  Google Scholar 

  • Cherednichenko G, Hurne AM, Fessenden JD, Lee EH, Allen PD, Beam KG, Pessah IN (2004) Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc Natl Acad Sci USA 101(44):15793–15798. doi:10.1073/pnas.0403485101

    Article  PubMed  CAS  Google Scholar 

  • Cherednichenko G, Ward CW, Feng W, Cabrales E, Michaelson L, Samso M, Lopez JR, Allen PD, Pessah IN (2008) Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 73(4):1203–1212. doi:10.1124/mol.107.043299

    Article  PubMed  CAS  Google Scholar 

  • Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT (2002) Novel functional properties of Ca (2+) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 541(Pt 2):435–452

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC (2010) The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci USA 107(4):1654–1659. doi:10.1073/pnas.0908735107

    Article  PubMed  CAS  Google Scholar 

  • De Waard M, Scott VE, Pragnell M, Campbell KP (1996) Identification of critical amino acids involved in alpha1-beta interaction in voltage-dependent Ca2+ channels. FEBS Lett 380(3):272–276. doi:10.1016/0014-5793(96)00007-5

    Article  PubMed  Google Scholar 

  • Feldmeyer D, Melzer W, Pohl B, Zollner P (1990) Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog. J Physiol 425:347–367

    PubMed  CAS  Google Scholar 

  • Felix R, Gurnett CA, De Waard M, Campbell KP (1997) Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J Neurosci 17(18):6884–6891

    PubMed  CAS  Google Scholar 

  • Flucher BE, Tuluc P (2011) A new l-type calcium channel isoform required for normal patterning of the developing neuromuscular junction. Channels (Austin) 5(6)

  • Flucher BE, Obermair GJ, Tuluc P, Schredelseker J, Kern G, Grabner M (2005) The role of auxiliary dihydropyridine receptor subunits in muscle. J Muscle Res Cell Motil 26(1):1–6. doi:10.1007/s10974-005-9000-2

    Article  PubMed  CAS  Google Scholar 

  • Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, Himmerkus N, Schweig U, Freichel M, Biel M, Hofmann F, Hoth M, Flockerzi V (2000) Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases l-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 275(19):14476–14481. doi:275/19/14476

    Article  PubMed  CAS  Google Scholar 

  • Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA, Zhang SP, Qin N, Flores CM, Isaacsohn I, Varadi M, Mori Y, Jones WK, Schwartz A (2009) Targeted Disruption of the Voltage-Dependent Ca2+ Channel {alpha}2/{delta}-1 Subunit. Am J Physiol. doi:10.1152/ajpheart.00122.2009

    Google Scholar 

  • Gach MP, Cherednichenko G, Haarmann C, Lopez JR, Beam KG, Pessah IN, Franzini-Armstrong C, Allen PD (2008) Alpha2delta1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. Biophys J 94(8):3023–3034. doi:10.1529/biophysj.107.118893

    Article  PubMed  CAS  Google Scholar 

  • Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II–III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor. J Biol Chem 274(31):21913–21919

    Article  PubMed  CAS  Google Scholar 

  • Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R, Powers PA (1996) Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation–contraction coupling. Proc Natl Acad Sci USA 93(24):13961–13966

    Article  PubMed  CAS  Google Scholar 

  • Gurnett CA, Felix R, Campbell KP (1997) Extracellular interaction of the voltage-dependent Ca2+ channel alpha2delta and alpha1 subunits. J Biol Chem 272(29):18508–18512

    Article  PubMed  CAS  Google Scholar 

  • Hurne AM, O’Brien JJ, Wingrove D, Cherednichenko G, Allen PD, Beam KG, Pessah IN (2005) Ryanodine receptor type 1 (RyR1) mutations C4958S and C4961S reveal excitation-coupled calcium entry (ECCE) is independent of sarcoplasmic reticulum store depletion. J Biol Chem 280(44):36994–37004. doi:10.1074/jbc.M506441200

    Article  PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Investig 115(8):2000–2009. doi:10.1172/JCI25525

    Article  PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, McCarthy T, Lehmann-Horn F (2000) Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve 23(1):4–17. doi:10.1002/(SICI)1097-4598(200001)23:1<4:AID-MUS3>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Kato AS, Zhou W, Milstein AD, Knierman MD, Siuda ER, Dotzlaf JE, Yu H, Hale JE, Nisenbaum ES, Nicoll RA, Bredt DS (2007) New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J Neurosci 27(18):4969–4977. doi:10.1523/JNEUROSCI.5561-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Kato AS, Siuda ER, Nisenbaum ES, Bredt DS (2008) AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59(6):986–996. doi:10.1016/j.neuron.2008.07.034

    Article  PubMed  CAS  Google Scholar 

  • Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264(3):1345–1348

    PubMed  CAS  Google Scholar 

  • Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor alpha1S II-III loop for skeletal-type excitation–contraction coupling. J Biol Chem 279(6):4721–4728. doi:10.1074/jbc.M307538200

    Article  PubMed  CAS  Google Scholar 

  • Lyfenko AD, Dirksen RT (2008) Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J Physiol 586(Pt 20):4815–4824. doi:10.1113/jphysiol.2008.160481

    Article  PubMed  CAS  Google Scholar 

  • Melzer W, Herrmann-Frank A, Luttgau HC (1995) The role of Ca2+ ions in excitation–contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241(1):59–116

    PubMed  Google Scholar 

  • Nakai J, Adams BA, Imoto K, Beam KG (1994) Critical roles of the S3 segment and S3-S4 linker of repeat I in activation of l-type calcium channels. Proc Natl Acad Sci USA 91(3):1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380(6569):72–75. doi:10.1038/380072a0

    Article  PubMed  CAS  Google Scholar 

  • Obermair GJ, Kugler G, Baumgartner S, Tuluc P, Grabner M, Flucher BE (2005) The Ca2+ channel alpha2delta-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of alpha1S or excitation–contraction coupling. J Biol Chem 280(3):2229–2237. doi:10.1074/jbc.M411501200

    Article  PubMed  CAS  Google Scholar 

  • Obermair GJ, Tuluc P, Flucher BE (2008) Auxiliary Ca(2+) channel subunits: lessons learned from muscle. Curr Opin Pharmacol 8:311–318. doi:10.1016/j.coph.2008.01.008

    Article  PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358. doi:10.1038/nature10238

    Article  PubMed  CAS  Google Scholar 

  • Pincon-Raymond M, Rieger F (1982) Extensive multiple innervation and abnormal synaptogenesis in muscular dysgenesis (mdg/mdg) in the mouse embryo. Reprod Nutr Dev 22(1B):217–226

    Article  PubMed  CAS  Google Scholar 

  • Pirone A, Schredelseker J, Tuluc P, Gravino E, Fortunato G, Flucher BE, Carsana A, Salvatore F, Grabner M (2010) Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavalpha1S-subunit. Am J Physiol 299(6):C1345–C1354. doi:10.1152/ajpcell.00008.2010

    Article  CAS  Google Scholar 

  • Powell JA, Rieger F, Blondet B, Dreyfus P, Pincon-Raymond M (1984) Distribution and quantification of ACh receptors and innervation in diaphragm muscle of normal and mdg mouse embryos. Dev Biol 101(1):168–180. doi:10.1016/0012-1606(84)90127-1

    Article  PubMed  CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 368(6466):67–70. doi:10.1038/368067a0

    Article  PubMed  CAS  Google Scholar 

  • Rieger F, Powell JA, Pincon-Raymond M (1984) Extensive nerve overgrowth and paucity of the tailed asymmetric form (16 S) of acetylcholinesterase in the developing skeletal neuromuscular system of the dysgenic (mdg/mdg) mouse. Dev Biol 101(1):181–191. doi:10.1016/0012-1606(84)90128-3

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature 325(6106):717–720. doi:10.1038/325717a0

    Article  PubMed  CAS  Google Scholar 

  • Schredelseker J, Di Biase V, Obermair GJ, Felder ET, Flucher BE, Franzini-Armstrong C, Grabner M (2005) The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proc Natl Acad Sci USA 102(47):17219–17224

    Article  PubMed  CAS  Google Scholar 

  • Schredelseker J, Dayal A, Schwerte T, Franzini-Armstrong C, Grabner M (2009) Proper restoration of excitation–contraction coupling in the dihydropyridine receptor beta1-null zebrafish relaxed is an exclusive function of the beta1a subunit. J Biol Chem 284(2):1242–1251. doi:10.1074/jbc.M807767200

    Article  PubMed  CAS  Google Scholar 

  • Schuhmeier RP, Gouadon E, Ursu D, Kasielke N, Flucher BE, Grabner M, Melzer W (2005) Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes. Biophys J 88(3):1765–1777. doi:10.1529/biophysj.104.051318

    Article  PubMed  CAS  Google Scholar 

  • Sheridan DC, Cheng W, Carbonneau L, Ahern CA, Coronado R (2004) Involvement of a heptad repeat in the carboxyl terminus of the dihydropyridine receptor beta1a subunit in the mechanism of excitation–contraction coupling in skeletal muscle. Biophys J 87(2):929–942. doi:10.1529/biophysj.104.043810

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253(5027):1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Sipos I, Pika-Hartlaub U, Hofmann F, Flucher BE, Melzer W (2000) Effects of the dihydropyridine receptor subunits gamma and alpha2delta on the kinetics of heterologously expressed l-type Ca2+ channels. Pflugers Arch 439(6):691–699

    Article  PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac l-type calcium channel mutations. Proc Natl Acad Sci USA 102(23):8089–8096. doi:10.1073/pnas.0502506102 discussion 8086–8088

    Article  PubMed  CAS  Google Scholar 

  • Striessnig J, Koschak A (2008) Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels (Austin) 2(4):233–251

    Google Scholar 

  • Striessnig J, Bolz HJ, Koschak A (2010) Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated l-type Ca2+ channels. Pflugers Arch 460(2):361–374. doi:10.1007/s00424-010-0800-x

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam P, Obermair GJ, Baumgartner S, Gebhart M, Striessnig J, Kaufmann WA, Geley S, Flucher BE (2009) Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells. Channels (Austin) 3(5):343–355

    CAS  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336(6195):134–139. doi:10.1038/336134a0

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 346(6284):567–569. doi:10.1038/346567a0

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Adams BA, Numa S, Beam KG (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352(6338):800–803. doi:10.1038/352800a0

    Article  PubMed  CAS  Google Scholar 

  • Tuluc P, Kern G, Obermair GJ, Flucher BE (2007) Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel {alpha}2{delta}-1 subunit in cardiac excitation–contraction coupling. Proc Natl Acad Sci USA 104(26):11091–11096

    Article  PubMed  CAS  Google Scholar 

  • Tuluc P, Molenda N, Schlick B, Obermair GJ, Flucher BE, Jurkat-Rott K (2009) A Ca(V)1.1 Ca(2+) channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle. Biophys J 96(1):35–44. doi:10.1016/j.bpj.2008.09.027

    Article  PubMed  CAS  Google Scholar 

  • Ursu D, Schuhmeier RP, Freichel M, Flockerzi V, Melzer W (2004) Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit. J Gen Physiol 124(5):605–618. doi:10.1085/jgp.200409168

    Article  PubMed  CAS  Google Scholar 

  • Ursu D, Sebille S, Dietze B, Freise D, Flockerzi V, Melzer W (2001) Excitation–contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1. J Physiol 533(Pt 2):367–377

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe W, Nicoll RA, Bredt DS (2005) Stargazin is an AMPA receptor auxiliary subunit. Proc Natl Acad Sci USA 102(2):485–490. doi:10.1073/pnas.0408269102

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Allen PD, Pessah IN, Lopez JR (2007) Enhanced excitation-coupled calcium entry in myotubes is associated with expression of RyR1 malignant hyperthermia mutations. J Biol Chem 282(52):37471–37478. doi:10.1074/jbc.M701379200

    Article  PubMed  CAS  Google Scholar 

  • Yarov-Yarovoy V, Baker D, Catterall WA (2006) Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. Proc Natl Acad Sci USA 103(19):7292–7297. doi:10.1073/pnas.0602350103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Austrian Research Fund (FWF) P20059 and P23479 to BEF, and from the Medical University Innsbruck MFI 2007-417 to PT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petronel Tuluc or Bernhard E. Flucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuluc, P., Flucher, B.E. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle CaV1.1 calcium channel splice variants. J Muscle Res Cell Motil 32, 249–256 (2011). https://doi.org/10.1007/s10974-011-9270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9270-9

Keywords

Navigation