Skip to main content
Log in

Spinophilin is required for normal morphology, Ca2+ homeostasis and contraction but dispensable for β-adrenergic stimulation of adult cardiomyocytes

  • EMC2011 Special Issue
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Spinophilin (SPN) is a ubiquitously expressed scaffolding protein that interacts through several binding modules with a variety of target proteins. Thus, SPN bundles F-actin, targets protein phosphatase 1 to the ryanodine receptor, and targets regulators of G-protein signaling to G-protein coupled receptors in cardiomyocytes. In this work we studied the role of SPN on cardiomyocyte morphology, function, and β-adrenergic responsiveness using a homozygous SPN knock-out mouse model (SPN−/−). We show that spinophilin deficiency significantly (1) reduced cardiomyocyte length, (2) increases both Ca2+ amplitude and maximal rate of Ca2+ rise during systole, and (3) decreased shortening amplitude and maximal rate of shortening, while (4) β-adrenergic stimulation remained intact. Our data suggest that spinophilin is an upstream regulator required for normal growth and excitation–contraction coupling, but is dispensable for β-adrenergic stimulation of adult cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 94:9956–9961

    Article  PubMed  CAS  Google Scholar 

  • Berndt N (1999) Protein dephosphorylation and the intracellular control of the cell number. Front Biosci 4:22–42

    Article  Google Scholar 

  • Bers DM (2004) Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 37:417–429

    Article  PubMed  CAS  Google Scholar 

  • da Costa-Goncalves AC, Tank J, Plehm R, Diedrich A, Todiras M, Gollasch M, Heuser A, Wellner M, Bader M, Jordan J, Luft FC, Gross V (2008) Role of the multidomain protein spinophilin in blood pressure and cardiac function regulation. Hypertension 52:702–707

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA 97:9287–9292

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Brautigan DL, Mumby M, Lamb NJ (1990) Protein phosphatase type-1, not type-2A, modulates actin microfilament integrity and myosin light chain phosphorylation in living nonmuscle cells. J Cell Biol 111:103–112

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco-Aparicio C, Peregrina S, Cañamero M, Fominaya J, Cecilia Y, Lleonart M, Hernandez-Losa J, Ramon Y Cajal S, Carnero A (2011) Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle 15:10 [Epub ahead of print]

    Google Scholar 

  • Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ, Zhuo M (2011) Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain [Epub ahead of print]

  • Liu CW, Wang RH, Dohadwala M, Schonthal AH, Villa-Moruzzi E, Berndt N (1999) Inhibitory phosphorylation of PP1alpha catalytic subunit during the G(1)/S transition. J Biol Chem 274:29470–29475

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Chen Y, Cottingham C, Peng N, Jiao K, Limbird LE, Wyss JM, Wang Q (2010) Enhanced hypotensive, bradycardic, and hypnotic responses to a2-adrenergic agonists in spinophilin-null mice are accompanied by increased G protein coupling to the a2A-adrenergic receptor. Mol Pharmacol 78:279–286

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708

    Article  PubMed  CAS  Google Scholar 

  • Ragusa M, Dancheck B, Critton DA, Nairn AC, Page R, Peti W (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struc Mol Biol 17:459–466

    Article  CAS  Google Scholar 

  • Sarrouilhe D, di Tommaso A, Metaye T, Ladeveze V (2006) Spinophilin: from partners to functions. Biochimie 88:1099–1113

    Article  PubMed  CAS  Google Scholar 

  • Satoh A, Nakanishi H, Obaishi H, Wada M, Takahashi K, Satoh K, Hirao K, Nishioka H, Hata Y, Mizoguchi A, Takai Y (1998) Neurabin-II/spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell–cell adhesion sites. J Biol Chem 273:3470–3475

    Article  PubMed  CAS  Google Scholar 

  • Trafford AW, D.úaz ME, Sibbring GC, Eisner DA (2000) Modulation of CICR has no maintained effect on systolic Ca2+ simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca2+ fluxes in rat ventricular myocytes. J Physiol 522:259–270

    Article  PubMed  CAS  Google Scholar 

  • Verduyn SC, Zaremba R, von der Velden J, Stienen GJ (2007) Effects of contractile protein phosphorylation on force development in permeabilized rat cardiac myocytes. Basic Res Cardiol 102:476–487

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, Milgram SL, Penninger JM, Allen PB, Greengard P, Muallem S (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7:405–411

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, Nairn AC, Greengard P (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 2:13–17

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Brandt NR, Caswell AH, Lee EY (1998) Binding of the catalytic subunit of protein phosphatase-1 to the ryanodine-sensitive calcium release channel protein. Biochemistry 37:18102–18109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Petra Sakel (MDC, Berlin, Germany) for technical assistance and for preparing the primary adult cardiomyocytes. We thank Wolfgang-Peter Schlegel for technical support of the single cell experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Morano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzhold, D., da Costa-Goncalves, A.C., Gross, V. et al. Spinophilin is required for normal morphology, Ca2+ homeostasis and contraction but dispensable for β-adrenergic stimulation of adult cardiomyocytes. J Muscle Res Cell Motil 32, 243–248 (2011). https://doi.org/10.1007/s10974-011-9259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9259-4

Keywords

Navigation