Skip to main content
Log in

Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The cellular function of the giant protein titin in striated muscle is a major focus of scientific attention. Particularly, its role in passive mechanics has been extensively investigated. In strong contrast, the structural details of this filament are very poorly understood. To date, only a handful of atomic models from single domain components have become available and data on poly-constructs are limited to scarce SAXS analyses. In this study, we examine the molecular parameters of poly-Ig tandems from I-band titin relevant to muscle elasticity. We revisit conservation patterns in domain and linker sequences of I-band modules and interpret these in the light of available atomic structures of Ig domains from muscle proteins. The emphasis is placed on features expected to affect inter-domain arrangements. We examine the overall conformation of a 6Ig fragment, I65–I70, from the skeletal I-band of soleus titin using SAXS and electron microscopy approaches. The possible effect of highly conserved glutamate groups at the linkers as well as the ionic strength of the medium on the overall molecular parameters of this sample is investigated. Our findings indicate that poly-Ig tandems from I-band titin tend to adopt extended arrangements with low or moderate intrinsic flexibility, independently of the specific features of linkers or component Ig domains across constitutively- and differentially-expressed tandems. Linkers do not appear to operate as free hinges so that lateral association of Ig domains must occur infrequently in samples in solution, even that inter-domain sequences of 4–5 residues length would well accommodate such geometry. It can be expected that this principle is generally applicable to all Ig-tandems from I-band titin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson RA, Joseph C, Kelly G, Muskett FW, Frenkiel TA, Nietlispach D, Pastore A, (2001). Ca2+-independent binding of an EF-hand domain to a novel motif in the alpha-actinin-titin complexNat Struct Biol 8: 853–857

    Article  PubMed  CAS  Google Scholar 

  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S, (2001). The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking systemCirc Res 89: 1065–1072

    PubMed  CAS  Google Scholar 

  • Bullard B, Linke WA, Leonard K, (2002). Varieties of elastic protein in invertebrate musclesJ Muscle Res Cell Motil 23: 435–447

    Article  PubMed  Google Scholar 

  • Di Cola E, Waigh T, Trinick J, Tskhovrebova L, Houmeida A, Pyckhout-Hintzen W, Dewhurst, (2005). Persistence Length of Titin from Rabbit Skeletal Muscles Measured with Scattering and Microrheology TechniquesBiophys J. 88: 4095–4106

    Article  PubMed  CAS  Google Scholar 

  • Feigin LA, Svergun DI, (1987). Structure Analysis by Small-Angle X-ray and Neutron Scattering, Plenum Press, New York

    Google Scholar 

  • Flory PJ, (1969). Statistical Mechanics of Chain Molecules, Interscience publishers, New York

    Google Scholar 

  • Fong S, Hamill SJ, Proctor M, Freund SM, Benian GM, Chothia C, Bycroft M, Clarke J, (1996). Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegansJ Mol Biol 264: 624–639

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Lu H, Schulten K, (2001). Simulated refolding of stretched titin immunoglobulin domainsBiophys J 81: 2268–2277

    PubMed  CAS  Google Scholar 

  • Gao M, Wilmanns M, Schulten K, (2002). Steered molecular dynamics studies of titin I1 domain unfoldingBiophys J 83: 3435–3445

    PubMed  CAS  Google Scholar 

  • Gautel M, (1996). The super-repeats of titin/connectin and their interactions: glimpses at sarcomeric assemblyAdv Biophys 33: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Gautel M, Goulding D, (1996). A molecular map of titin/connectin elasticity reveals two different mechanisms acting in seriesFEBS Lett 385: 11–14

    Article  PubMed  CAS  Google Scholar 

  • Granzier HL, Labeit S, (2004). The giant protein titin: a major player in myocardial mechanics, signaling, and diseaseCirc Res 94: 284–295

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Nakauchi Y, Maruyama K, Fujime S, (1993). Characterization of beta-connectin (titin 2) from striated muscle by dynamic light scatteringBiophys J. 65: 1906–1915

    PubMed  CAS  Google Scholar 

  • Holden HM, Ito M, Hartshorne DJ, Rayment I, (1992). X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 A resolutionJ Mol Biol 227: 840–851

    Article  PubMed  CAS  Google Scholar 

  • Improta S, Krueger JK, Gautel M, Atkinson RA, Lefevre JF, Moulton S, Trewhella J, Pastore A, (1998). The assembly of immunoglobulin-like modules in titin: implications for muscle elasticityJ Mol Biol 284: 761–777

    Article  PubMed  CAS  Google Scholar 

  • Improta S, Politou AS, Pastore A, (1996). Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticityStructure 4: 323–337

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Bustamante C, Granzier HL, (2003). Mechanics and structure of titin oligomers explored with atomic force microscopyBiochim Biophys Acta 1604: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL, Bustamante C, (1997). Folding-unfolding transitions in single titin molecules characterized with laser tweezersScience 276: 1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Kenny PA, Liston EM, Higgins DG, (1999). Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteinsGene 17: 11–23

    Article  Google Scholar 

  • Kobe B, Heierhorst J, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE, (1996). Giant protein kinases: domain interactions and structural basis of autoregulationEMBO J 15: 6810–6821

    PubMed  CAS  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI, (2003). PRIMUS – a Windows-PC based system for small-angle scattering data analysisJ Appl Crystallogr 36: 1277–1282

    Article  CAS  Google Scholar 

  • Labeit S, Kolmerer B, (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticityScience 270: 293–296

    PubMed  CAS  Google Scholar 

  • Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE, Fernandez JM, (2000). Point mutations alter the mechanical stability of immunoglobulin modulesNat Struct Biol 7: 1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Li H, Fernandez JM, (2003). Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J Mol Biol 334: 75–86

    Article  PubMed  CAS  Google Scholar 

  • Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM, (2002). Reverse engineering of the giant muscle protein titinNature 418: 998–1002

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S, (1996). Towards a molecular understanding of the elasticity of titinJ Mol Biol 261: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K, (1998). Unfolding of titin immunoglobulin domains by steered molecular dynamics simulationBiophys J 75: 662–671

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Kan L, Wang K, (2001). Polyproline II helix is a key structural motif of the elastic PEVK segment of titinBiochemistry 40: 3427–3438

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Wang K, (2003). Malleable conformation of the elastic PEVK segment of titin: non-co-operative interconversion of polyproline II helix, beta-turn and unordered structuresBiochem J 374: 687–695

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, murakami F, Handa S, Eguchi G, (1977). Connectin, an elastic protein of muscle: characterization and functionJ Biochem 82: 317–337

    PubMed  CAS  Google Scholar 

  • Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M, Gautel M, (1998). Structural basis for activation of the titin kinase domain during myofibrillogenesisNature 395: 863–869

    Article  PubMed  CAS  Google Scholar 

  • Mayans O, Wuerges J, Canela S, Gautel M, Wilmanns M, (2001). Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titinStructure 9: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Miller MK, Granzier H, Ehler E, Gregorio CC, (2004). The sensitive giant: the role of titin-based stretch sensing complexes in the heartTrends Cell Biol 14: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Muhle-Goll CM, Pastore A, Nilges M, (1998). The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domainsStructure 6: 1291–1302

    Article  PubMed  Google Scholar 

  • Pfuhl M, Pastore A, (1995). Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I setStructure 3: 391–401

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Gautel M, Improta S, Vangelista L, Pastore A, (1996). The elastic I-band region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domainsJ Mol Biol 255: 604–616

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE, (1997). Reversible unfolding of individual titin immunoglobulin domains by AFMScience 276: 1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Rivetti C, Guthold M, Bustamante C, (1996). Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysisJ Mol Biol. 264: 919–932

    Article  PubMed  CAS  Google Scholar 

  • Scott KA, Steward A, Fowler SB, Clarke J, (2002). Titin; a multidomain protein that behaves as the sum of its partsJ Mol Biol 315: 819–829

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI, (1992). Determination of the regularization parameter in indirect transform methods using perceptual criteriaJ Appl Crystallogr 25: 495–503

    Article  Google Scholar 

  • Svergun DI, (1993). A direct indirect method of small-angle scattering data treatmentJ Appl Crystallogr 26: 258–267

    Article  Google Scholar 

  • Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H, (1998). Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segmentsJ Cell Biol 140: 853–859

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, (2001). Flexibility and extensibility in the titin molecule: analysis of electron microscope dataJ Mol Biol 310: 755–771

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, (2003). Titin: properties and family relationshipsNat Rev Mol Cell Biol 4: 679–689

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA, Simmons RM, (1997). Elasticity and unfolding of single molecules of the giant muscle protein titinNature 387: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Muhle-Goll C, Kellermayer MS, Labeit S, Granzier H, (2002). Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segmentsJ Struct Biol 137: 248–258

    Article  PubMed  CAS  Google Scholar 

  • Witt CC, Olivieri N, Centner T, Kolmerer B, Millevoi S, Morell J, Labeit D, Labeit S, Jockusch H, Pastore A, (1998). A survey of the primary structure and the interspecies conservation of I-band titin’s elastic elements in vertebratesJ Struct Biol 122: 206–215

    Article  PubMed  CAS  Google Scholar 

  • Zou P, Gautel M, Geerlof A, Wilmanns M, Koch MH, Svergun DI, (2003). Solution scattering suggests cross-linking function of telethonin in the complex with titinJ Biol Chem 278: 2636–2644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our gratitude goes to Prof. Ueli Aebi for support with the electron microscopy technique. We would like to acknowledge financial support to D.L. by D.F.G. (La1969/1-1) and to L.K. by the Swiss Society for Research on Muscular Diseases (grant awarded to U. Aebi and S. Strelkov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mayans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, M., Svergun, D.I., Kreplak, L. et al. Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents. J Muscle Res Cell Motil 26, 355–365 (2005). https://doi.org/10.1007/s10974-005-9017-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-005-9017-6

Keywords

Navigation