Skip to main content
Log in

TG, DTA and X-ray thermodiffraction study of wall paintings from the fifteenth century

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, it is reported that thermal analysis techniques such as TG, DTA and X-ray thermodiffraction, performed in air or nitrogen atmosphere, are very useful for evaluating and characterizing the pigments and the supports used for the manufacture of wall paintings from the San Isidoro del Campo Monastery (fifteenth century) in which different scenes from the life of San Jeronimo are represented. The use of thermal techniques has allowed for collecting information on the technology and raw materials used in the manufacture of these wall paintings. The composition of the different colours forming the wall paintings is the following: blue by azurite, green by atacamite, red by iron oxide (hematite), cinnabar and ochre by iron oxyhydroxides (goethite), black by carbon and white by calcite. In all the colours, calcite and quartz were also identified. The paintings were performed by using the fresco technique. The support mortars are constituted of calcite, quartz and straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duran A, Robador MD, Jimenez de Haro MC, Ramirez-Valle V. Study by thermal analysis of mortars belonging to wall paintings corresponding to some historic buildings of Sevillian art. J Therm Anal Calorim. 2008;92:353–9. https://doi.org/10.1007/s10973-007-8733-0.

    Article  CAS  Google Scholar 

  2. Anastasiou M, Hasapis T, Zorba T, Plavidou E, Chrissafis K, Paraskevopoulos K. TG-DTA and FTIR analyses of plasters from byzantine monuments in Balkan region. J Therm Anal Calorim. 2006;84(1):27–32. https://doi.org/10.1007/s10973-005-7211-9.

    Article  CAS  Google Scholar 

  3. Duran A, Jimenez de Haro MC, Perez-Rodriguez JL, Franquelo ML, Herrera LK, Justo A. Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation-high resolution X-ray powder diffraction and conventional spectroscopy-chromatography. Archaeometry. 2009;52(2):286–307. https://doi.org/10.1111/j.1475-4754.2009.00478.x.

    Article  CAS  Google Scholar 

  4. Perez-Rodriguez JL, Duran A. Mineralogical characterization of polychrome in cultural heritage artefacts (antiquity to date) from southern Spain using micro-Raman spectroscopy and complementary techniques. Spectrosc Lett. 2014;47:223–37. https://doi.org/10.1080/00387010.2013.791857.

    Article  CAS  Google Scholar 

  5. Duran-Benito A, Herrera-Quintero LK, Robador-Gonzalez MD, Perez-Rodriguez JL. Color study of Mudejar paintings of the pond found in the palace of Reales Alcazares. Color Res Appl. 2007;32(6):489–95. https://doi.org/10.1002/col.20351.

    Article  Google Scholar 

  6. Valle Fernández T, Respaldiza Lama PJ. La pintura mural almohade en el Palacio del yeso. Apuntes del Alcázar de Sevilla. 2000;1:56–73.

    Google Scholar 

  7. Valle Fernández T. Un proyecto para la recuperación de pinturas murales en el Real Alcázar. Apuntes del Alcázar de Sevilla. 2001;2:51–63.

    Google Scholar 

  8. Vitruvius. De Architectura. In: Morgan MH, editor. Libri decem, II (materials) and VII (finishes and colours). Whitefish: Kessinger Publishing; 2005.

    Google Scholar 

  9. Pliny the Elder. Natural history. Paris: Societe d’Editions Les Belles Letters; 1985.

    Google Scholar 

  10. Delamare F. Les peintures murales romaines de l’Acropole de Léro. Revue d’Archéometrie. 1983;7:85–98.

    Article  Google Scholar 

  11. Edreira MC, Feliu MJ, Fernandez-Lorenzo C, Martin J. Roman wall paintings characterization from Cripta del Museo and Alcazaba in Merida (Spain): chromatic, energy dispersive X-ray fluorescence spectroscopic, X-ray diffraction and Fourier transform infrared spectroscopic analysis. Anal Chim Acta. 2001;434:331–45. https://doi.org/10.1016/S0003-2670(01)00847-9.

    Article  CAS  Google Scholar 

  12. Garofano I, Duran A, Perez Rodriguez JL, Robador MD. Natural earth pigments from roman and Arabic wall paintings. Spectrosc Lett. 2011;44:560–5. https://doi.org/10.1080/00387010.2011.610655.

    Article  CAS  Google Scholar 

  13. Sympson RD, Fisher R, Libsch K. Thermal stability of azurite and malachite. Am Mineral. 1964;49(7–8):1111–4.

    Google Scholar 

  14. Seguin MK. Thermogravimetric and differential thermal analysis of malachite and azurite in inert atmosphere and in air. Can Mineral. 1975;13:127–32.

    Google Scholar 

  15. de Faria DLA, Lopes FN. Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc. 2007;45(2):117–21. https://doi.org/10.1016/j.vibspec.2007.07.003.

    Article  CAS  Google Scholar 

  16. Gatta T, Campanella L, Coluzza C, Mambro V, Postorino P, Tomassett M, Visco G. Characterization of black pigment used in 30 BC fresco wall paint using instrumental methods and chemometry. Chem Cent J. 2012;6(Suppl 2):S2. https://doi.org/10.1186/1752-153X-6-S2-S2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balaz P, Post E, Bastl Z. Thermoanalytical study of mechanically activated cinnabar. Thermochim Acta. 1992;200:371–7. https://doi.org/10.1016/0040-6031(92)85130-N.

    Article  CAS  Google Scholar 

  18. Anastasiou M, Hasapis T, Zorba E, Pavlidou K, Chrissafis K, Paraskevopolos M. TG-DTA and FTIR analyses of plasters from byzantine monuments in Balkan region. J Therm Anal Calorim. 2006;84:27–32. https://doi.org/10.1007/s10973-005-7211-9.

    Article  CAS  Google Scholar 

  19. Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: The Geological Institute of Hungary; 2011.

    Google Scholar 

  20. Perez-Rodriguez JL, Perez-Maqueda R, Franquelo ML, Duran A. Study of the thermal decomposition of historical metal threads. J Therm Anal Calorim. 2018;134(1):15–22. https://doi.org/10.1007/s10973-017-6924-x.

    Article  CAS  Google Scholar 

  21. Franquelo ML, Robador MD, Perez-Rodriguez JL. Study of coatings by thermal analysis in a monument built with calcarenite. J Therm Anal Calorim. 2015;121:195–201. https://doi.org/10.1007/s10973-015-4432-4.

    Article  CAS  Google Scholar 

  22. Perez-Rodriguez JL, Duran A, Centeno MA, Martinez-Blanes JM, Robador MD. Thermal analysis of monument patina containing hydrated calcium oxalate. Thermochim Acta. 2011;512:5–12. https://doi.org/10.1016/j.tca.2010.08.015.

    Article  CAS  Google Scholar 

  23. Duran A, Perez-Maqueda LA, Poyato J, Perez-Rodriguez JL. A thermal study approach to roman age wall painting mortars. J Therm Anal Calorim. 2010;99:803–9. https://doi.org/10.1007/s10973-009-0667-2.

    Article  CAS  Google Scholar 

  24. Corti C, Rampazzi L, Bugini R, Sansonetti A, Biraghi M, Castelletti L, Nobile I, Orsenigo C. Thermal analysis and archaeological chronology: the ancient mortars of the site of Baradello (Como, Italy). Thermochim Acta. 2013;572:71–84. https://doi.org/10.1016/j.tca.2013.08.015.

    Article  CAS  Google Scholar 

  25. Iordanidis A, Garcia-Guinea J, Strati A, Gkimourtzina A, Papoulidou A. Thermal, mineralogical and spectroscopic study of plasters from three post-Byzantine churches from Kastoria (northern Greece). J Therm Anal Calorim. 2011;103:577–86. https://doi.org/10.1007/s10973-010-1055-7.

    Article  CAS  Google Scholar 

  26. Yousefi B, Sfarra S, Ibarra-Castanedo C, Avdelidis NP, Maldague XPV. Thermography data fusion and nonnegative matrix factorization for the evaluation of cultural heritage objects and buildings. J Therm Anal Calorim. 2019;136:943–55. https://doi.org/10.1007/s10973-018-7644-6.

    Article  CAS  Google Scholar 

  27. Yousefi B, Sojasi S, Ibarra Castanedo C, Maldague XPV, Beaudoin G, Chamberland M. Comparison assessment of low rank sparse-PCA based-clustering/classification for automatic mineral identification in long wave infrared hyperspectral imagery. Infrared Phys Technol. 2018;93:103–11. https://doi.org/10.1016/j.infrared.2018.06.026.

    Article  CAS  Google Scholar 

  28. Grim RE, Rowland RA. Differential thermal analysis of clay minerals and other hydrous materials (parts 1 and 2). Am Mineral. 1942;27:746–61/801–18.

  29. Eastaugh N, Walsh V, Chaplin T, Siddall R. Pigment compendium: a dictionary and optical microscopy of historical pigments. Burlington: Elsevier; 2008.

    Book  Google Scholar 

  30. De Diego-Diaz B, Duran A, Alvarez-Garcia MR, Fernandez-Rodriguez J. New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion. Fuel. 2019;245:240–6. https://doi.org/10.1016/j.fuel.2019.02.051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Luis Perez-Rodriguez or Adrian Duran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Rodriguez, J.L., Franquelo, M.L. & Duran, A. TG, DTA and X-ray thermodiffraction study of wall paintings from the fifteenth century. J Therm Anal Calorim 143, 3257–3265 (2021). https://doi.org/10.1007/s10973-020-09420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09420-5

Keywords

Navigation