Skip to main content
Log in

Energetic, structural and tautomeric analysis of 2-mercaptobenzimidazole

An experimental and computational approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports an experimental and theoretical study about the energetic and structural characteristics of the 2-mercaptobenzimidazole (MBI) tautomeric forms (thione and thiol). The standard (p° = 0.1 MPa) molar enthalpy of formation, at T = 298.15 K, in the gaseous phase, for MBI was derived from its enthalpies of combustion and sublimation, obtained by rotating-bomb calorimetry and by the Knudsen effusion technique, respectively. The results are compared with the corresponding data for MBI thione/thiol tautomers calculated by the G3(MP2)//B3LYP approach that suggest the thione form as the preferred form of MBI in gaseous phase. Computationally, the molecular structures of both tautomers were established and the geometrical parameters were determined at the B3LYP/6-31G(d) level of theory. In addiction, the G3(MP2)//B3LYP tautomerization energy at 0 K for thione/thiol forms of MBI was calculated and also evidences that the tautomeric equilibrium favours the thione tautomer. The standard Gibbs energy of formation in crystalline and gaseous phases was also derived, allowing an analysis of the thermodynamic stability of MBI in comparison with other related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bojarska-Olejnik E, Stefaniak L, Witanowski M, Hamdi BT, Webb GA. Applications of NNMR to a study of tautomerism in some monocyclic azoles. Magn Reson Chem. 1985;23:166–9.

    Article  CAS  Google Scholar 

  2. Balestrero RS, Forkey DM, Russell JG. 15N NMR: Iminothiol-thioamide tautomerism of 2-mercaptobenzazoles and 1-methyl-2-mercaptoimidazole. Magn Reson Chem. 1986;24:651–5.

    Article  CAS  Google Scholar 

  3. Öğretir C, Yarligan S. AM1, PM3 and MNDO study of the tautomerism of 2-, 4- or 5-imidazolones and their thio- and azo- analogs. J Mol Struct Theochem. 1996;366:227–31.

    Article  Google Scholar 

  4. Açikkalp E, Yildiz K, Yarligan S, Öğretir C. Semiempirical gas phase study on tautomerizm of 2-hydroxy amino and mercapto benzimidazoles. J Mol Struct Theochem. 2001;536:155–60.

    Article  Google Scholar 

  5. Hipler F, Fischer R, Müller J. Examining thermolysis reactions and tautomerism of 2-mercapto-5-methyl-1,3,4-thiadiazole and 2,5-dimercapto-1,3,4-thiadiazole. J Chem Soc Perkin Trans. 2002;2:1620–6.

    Article  Google Scholar 

  6. Contreras JG, Madariaga ST. Intramolecular proton transfer in tautomeric 2-Imidazolone and 2-thioimidazolone. J Phys Org Chem. 2003;16:47–52.

    Article  CAS  Google Scholar 

  7. Zhu HJ, Ren Y, Ren J, Chu SY. DFT explorations of tautomerism of 2-mercaptoimidazole in aqueous solution. J Mol Struct Theochem. 2005;730:199–205.

    Article  CAS  Google Scholar 

  8. Gómez-Zavaglia A, Reva ID, Frija L, Cristiano ML, Fausto R. Molecular structure, vibrational spectra and photochemistry of 5-mercapto-1-methyltetrazole. J Mol Struct. 2006;786:182–92.

    Article  Google Scholar 

  9. Ansar SM, Haputhanthri R, Edmonds B, Liu D, Yu L, Sygula A, Zhang D. Determination of the binding affinity, packing, and conformation of thiolate and thione ligands on gold nanoparticles. J Phys Chem C. 2011;115:653–60.

    Article  CAS  Google Scholar 

  10. Xue G, Lu Y. Various adsorption states of 2-mercaptobenzimidazole on the surfaces of gold and silver studied by surface enhanced Raman scattering. Langmuir. 1994;10:967–9.

    Article  CAS  Google Scholar 

  11. Bigotto A, Pergolese B. Surface-enhanced Raman spectroscopic studies of 2-mercaptobenzoxazole on silver sols. J Raman Spectrosc. 2001;32:953–9.

    Article  CAS  Google Scholar 

  12. Raper ES. Complexes of heterocyclic thione donors. Coord Chem Rev. 1985;61:115–84.

    Article  CAS  Google Scholar 

  13. Street JP, Skorey KI, Brown RS, Ball RG. Biomimetic models for cysteine proteases. 3. Acylation of imidazolium-thiolate zwitterions by p-nitrophenylacetate as a model for the acylation step and demonstration of intramolecular general-base-catalyzed delivery of water by imidazole to thiol esters as a model for the deacylation step. J Am Chem Soc. 1985;107:7669–79.

    Article  CAS  Google Scholar 

  14. Shouji E, Buttry DA. An investigation of the effect of pyridine derivatives on the oxidative polymerization process of 2,5-dimercapto-1,3,4-thiadiazole and its disulfide dimer. J Phys Chem B. 1998;102:1444–9.

    Article  CAS  Google Scholar 

  15. Katritzky AR, Borowiecka J, Fan W-Q, Brannigan LH. Some novel S-mono- and S, S’-unsymmetrical di-substituted derivatives of 1,3,4-thiadiazoledithione. J Heterocycl Chem. 1991;28:1139–41.

    Article  CAS  Google Scholar 

  16. Katritzky AR, Wang Z, Offerman RJ. S, S’- and S, N-disubstituted derivatives of 1,3,4-thiadiazoledithiones. J Heterocycl Chem. 1990;27:139–42.

    Article  CAS  Google Scholar 

  17. Form GR, Raper ES, Downie TC. The crystal and molecular structure of 2-mercaptobenzimidazole. Acta Cryst. 1976;B32:345–8.

    Article  CAS  Google Scholar 

  18. Prusner P, Sundaralingam M. Crystal and molecular structure of 2-thio-1-(β-D-ribofuranosyl)-3H-benzimidazole. Acta Cryst. 1973;B29:2328–34.

    Article  Google Scholar 

  19. Cumper CWN, Pickering GD. Electric dipole moments of some imidazolin-2(3H)-ones, benzimidazol-2(3H)-ones, and analogous thiones. J Chem Soc Perkin Trans. 1972;2:2045–8.

    Article  Google Scholar 

  20. Mentado J, Flores H, Amador P. Combustion energies and formation enthalpies of 2-SH-benzazoles. J Chem Thermodyn. 2008;40:1106–9.

    Article  CAS  Google Scholar 

  21. Silva ALR, Morais VMF, Ribeiro da Silva MDMC, Simões RG, Bernardes CES, Piedade MFM, Minas da Piedade ME. Structural and energetic characterization of anhydrous and hemihydrated 2-mercaptoimidazole: Calorimetric, X-ray diffraction, and computational studies. J Chem Thermodyn. 2016;95:35–48.

    Article  CAS  Google Scholar 

  22. Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.

    Article  CAS  Google Scholar 

  23. Sunner S, Månsson M. Combustion calorimetry. Oxford: Pergamon Press; 1979.

    Google Scholar 

  24. Ribeiro da Silva MAV, Ferrão MLCCH, Jiye F. Standard enthalpies of combustion of the six dichlorophenols by rotating-bomb calorimetry. J Chem Thermodyn. 1994;26:839–46.

    Article  CAS  Google Scholar 

  25. Good WD, Scott DW, Waddington G. Combustion calorimetry of organic fluorine compounds by a rotating-bomb method. J Phys Chem. 1956;60:1080–9.

    Article  CAS  Google Scholar 

  26. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 27–57.

    Google Scholar 

  27. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 75–126.

    Google Scholar 

  28. Good WD, Scott DW. In: Skinner HA, editor. Experimental thermochemistry, 2, vol. 2. New York: Interscience; 1962.

    Google Scholar 

  29. Washburn EW. Standard states for bomb calorimetry. J Res Nat Bur Stand. 1933;10:525–58.

    Article  CAS  Google Scholar 

  30. Vogel AI. Quantitative inorganic analysis. London: Longman; 1978.

    Google Scholar 

  31. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(Suppl):2.

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JAJ, Stratmann RE, Burant JC et al. Gaussian03, revision C.01, Gaussian Inc., Wallingford CT; 2004.

  33. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K. Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys. 1999;110:7650–7.

    Article  CAS  Google Scholar 

  34. Monte MJS, Almeida ARRP, Matos MAR. Thermodynamic study on the sublimation of five aminomethoxybenzoic acids. J Chem Eng Data. 2010;55:419–23.

    Article  CAS  Google Scholar 

  35. Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993;4:271–8.

    Article  CAS  Google Scholar 

  36. Irikura KK. Thermo.pl, National Institute of Standards and Technology, http://www.cstl.nist.gov/div838/group_06/irikura/prog/thermo.html; 2002.

  37. Merrick JP, Moran D, Radom L. An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A. 2007;111:11683–700.

    Article  CAS  Google Scholar 

  38. Silva ALR, Monte MJS, Morais VMF, Ribeiro da Silva MDMC. Thermodynamic study of 2-aminothiazole and 2-aminobenzothiazole: experimental and computational approaches. J Chem Thermodyn. 2014;74:67–77.

    Article  CAS  Google Scholar 

  39. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 297–325.

    Google Scholar 

  40. Olofson G. Assignment of uncertainties. In: Sunner S, Månsson M, editors. Combustion calorimetry, vol. 1. Oxford: Pergamon Press; 1979. p. 137–61.

    Chapter  Google Scholar 

  41. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1979.

    Google Scholar 

  42. Wheatley PJ. The crystal and molecular structure of 2-methylthiobenzothiazole. J Chem Soc. 1962;3636–8.

  43. Chesick JP, Donohue J. The molecular and crystal structure of 2-mercaptobenzothiazole. Acta Cryst. 1971;B27:1441–4.

    Article  Google Scholar 

  44. Roux MV, Temprado M, Jiménez P, Foces-Foces C, Notario R, Parameswar AR, Demchenko AV, Chickos JS, Deakyne CA, Liebman JF. Experimental and theoretical study of the structures and enthalpies of formation of 3H-1,3-Benzoxazole-2-thione, 3H-1,3-Benzothiazole-2-thione, and their tautomers. J Phys Chem A. 2010;114:6336–41.

    Article  CAS  Google Scholar 

  45. Chase Jr. MW. NIST_JANAF Themochemical Tables, 4th edn. J Phys Chem Ref Data. 1998;Monograph 9:1–1951.

  46. Jimenez P, Roux MV, Turrion C. Thermochemical properties of N-heterocyclic compounds I. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of pyrazole, imidazole, indazole, and benzimidazole. J Chem Thermodyn. 1987;19:985–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation for Science and Technology (FCT) of Portugal, Project UID/QUI/UI0081/2013, and FEDER, Projects POCI-01-0145-FEDER-006980 and NORTE-01-0145-FEDER-000028. ALRS thanks FCT for the award of a Ph.D. Grant (SFRH/BD/69606/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.L.R., Ribeiro da Silva, M.D.M.C. Energetic, structural and tautomeric analysis of 2-mercaptobenzimidazole. J Therm Anal Calorim 129, 1679–1688 (2017). https://doi.org/10.1007/s10973-017-6353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6353-x

Keywords

Navigation