Skip to main content
Log in

Synthesis and characterization of protein microcapsules for eugenol storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Eugenol, an essential oil which has antioxidant and antimicrobial properties, has a limited applicability due the high volatility; in this scenario, microencapsulation is a technology that protects the substances from the environment with a physical barrier. This work aims to study the combination of the bovine serum albumin and rice bran protein with carrageenan as encapsulating agents, observing the encapsulation efficiency on eugenol. The spray drying process was used for encapsulation. The process was characterized by thermal and spectroscopy analysis that shows the presence of eugenol encapsulated. Determined by UHPLC and TG, encapsulation efficiency of eugenol was up to 79.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chatterjee D, Bhattacharjee P. Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: shelf-life and frying stability of soybean oil. J Food Eng. 2013;117:545–50.

    Article  CAS  Google Scholar 

  2. Zhang R, Kulkarni KA, Kulkarni AP. Oxidation of eugenol by purified human term placental peroxidase. Placenta. 2000;21:234–40.

    Article  CAS  Google Scholar 

  3. Rauscher FM, Sanders RA, Watkins JB. Effects of combined quercetin and coenzyme Q(10) treatment on oxidative stress in normal and diabetic rats. J Biochem Mol Toxicol. 2002;16:197–202.

    Article  Google Scholar 

  4. Ogata M, Hoshi M, Urano S, Endo T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull. 2000;48:1467–9.

    Article  CAS  Google Scholar 

  5. Chen H, Zhang Y, Zhong Q. Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. J Food Eng. 2015;144:93–102.

    Article  CAS  Google Scholar 

  6. García-García R, López-Malo A, Palou E. bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. J Food Sci. 2011;76:M95–100.

    Article  Google Scholar 

  7. Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130:107–15.

    Article  CAS  Google Scholar 

  8. Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol. 2005;20:106–11.

    Article  CAS  Google Scholar 

  9. Gayoso CW, Lima EO, Oliveira VT, Pereira FO, Souza EL, Lima IO, et al. Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol. Fitoterapia. 2005;76:247–9.

    Article  CAS  Google Scholar 

  10. El Asbahani A, Miladi K, Badri W, Sala M, Aït Addi EH, Casabianca H, et al. Essential oils: from extraction to encapsulation. Int J Pharm. 2015;483:220–43.

    Article  CAS  Google Scholar 

  11. Fernandes RVDB, Borges SV, Botrel DA. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym. 2014;101:524–32.

    Article  CAS  Google Scholar 

  12. Ascheri DPR, Marquez MOM, Martucci ET. Microencapsulação de óleo essencial de laranja: seleção de material de parede. Ciência e Tecnol Aliment. 2003;23:1–6.

    Article  CAS  Google Scholar 

  13. Hong K, Park S. Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Mater Chem Phys. 1999;58:128–31.

    Article  CAS  Google Scholar 

  14. Favaro-trindade CS, De Pinho SC. Revisão—Microencapsulação de ingredientes alimentícios.pdf. Braz J Food Technol. 2008;11:103–12.

    CAS  Google Scholar 

  15. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, et al. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng. 2006;75:27–35.

    Article  CAS  Google Scholar 

  16. Hersch-Martínez P, Leaños-Miranda BE, Solórzano-Santos F. Antibacterial effects of commercial essential oils over locally prevalent pathogenic strains in Mexico. Fitoterapia. 2005;76:453–7.

    Article  Google Scholar 

  17. Da Silva-Buzanello RA, Ferro AC, Bona E, Cardozo-Filho L, De Araújo PHH, Leimann FV, et al. Validation of an ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles. Food Chem. 2015;172:99–104.

    Article  Google Scholar 

  18. Banerjee S, Chattopadhyay P, Ghosh A, Goyary D, Karmakar S, Veer V. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer-protein blends. Carbohydr Polym. 2013;93:691–7.

    Article  CAS  Google Scholar 

  19. Choi M-J, Soottitantawat A, Nuchuchua O, Min S-G, Ruktanonchai U. Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion method. Food Res Int. 2009;42:148–56.

    Article  CAS  Google Scholar 

  20. Peng C, Zhao S-Q, Zhang J, Huang G-Y, Chen L-Y, Zhao F-Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014;165:560–8.

    Article  CAS  Google Scholar 

  21. Sutaphanit P, Chitprasert P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 2014;150:313–20.

    Article  CAS  Google Scholar 

  22. Dima C, Cotârlet M, Alexe P, Dima S. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innov Food Sci Emerg Technol. 2014;22:203–11.

    Article  CAS  Google Scholar 

  23. Alvim ID, Grosso CRF. Microparticles obtained by complex coacervation: influence of the type of reticulation and the drying process on the release of the core material. Ciência e Tecnol Aliment. 2010;30:1069–76.

    Article  Google Scholar 

  24. Yuliani S, Bhandari B, Rutgers R, D’Arcy B. Application of microencapsulated flavor to extrusion product. Food Rev Int. 2004;20:163–85.

    Article  CAS  Google Scholar 

  25. Astolfi-filho Z, Souza AC, Reipert ÉCD, Telis VRN. Encapsulação de suco de maracujá por co-cristalização com sacarose: cinética de cristalização e propriedades físicas. Ciênc Tecnol Aliment. 2005;25:795–801.

    Article  CAS  Google Scholar 

  26. Toledo Hijo AAC, da Costa JMG, Silva EK, Azevedo VM, Yoshida MI, Borges SV. Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J Food Process Eng. 2015;38:1–10.

    Article  Google Scholar 

  27. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40:1107–21.

    Article  CAS  Google Scholar 

  28. Alvarenga Botrel D, Vilela Borges S, Victória de Barros Fernandes R, Dantas Viana A, Maria Gomes da Costa J, Reginaldo Marques G. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. Int J Food Sci Technol. 2012;47:2289–96.

    Article  Google Scholar 

  29. Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol. 2009;136:71–4.

    Article  CAS  Google Scholar 

  30. Zbicinski I, Delag A, Strumillo C, Adamiec J. Advanced experimental analysis of drying kinetics in spray drying. Chem Eng J. 2002;86:207–16.

    Article  CAS  Google Scholar 

  31. Dubey R, Shami TC, Bhasker Rao KU. Microencapsulation technology and applications. Def Sci J. 2009;59:82–95.

    CAS  Google Scholar 

  32. Trčková J, Štetina J, Kánský J. Influence of protein concentration on rheological properties of carrageenan gels in milk. Int Dairy J. 2004;14:337–43.

    Article  Google Scholar 

  33. Chandi GK, Sogi DS. Functional properties of rice bran protein concentrates. J Food Eng. 2007;79:592–7.

    Article  CAS  Google Scholar 

  34. Hamada JS. Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. J Food Sci. 2000;65:305–10.

    Article  CAS  Google Scholar 

  35. Prata AS, Sgarbieri VC. Obtenção e caracterização química e nutricional in vitro das proteínas do soro de sangue bovino. Ciência e Tecnol Aliment. 2005;25:327–32.

    Article  CAS  Google Scholar 

  36. Fernandes LP, Candido RC, Oliveira WP. Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends. Food Bioprod Process. 2012;90:425–32.

    Article  Google Scholar 

  37. Han SW, Jeong HC, Kim HK, Lee DY, Park HH, Park JJ, et al. A method for preparing protein concentrate from rice bran. 2009. https://www.google.com/patents/WO2009035186A1?hl=pt-BR&cl=en. Accessed 17 March 2017.

  38. Fritzen-Freire CB, Prudêncio ES, Amboni RDMC, Pinto SS, Negrão-Murakami AN, Murakami FS. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int. 2012;45:306–12.

    Article  CAS  Google Scholar 

  39. Fabian CB, Huynh LH, Ju YH. Precipitation of rice bran protein using carrageenan and alginate. LWT Food Sci Technol. 2010;43:375–9.

    Article  CAS  Google Scholar 

  40. Tanaka T, Lu T, Yuasa S, Yamaura K. Structure and properties of poly(vinyl alcohol)/?-carrageenan blends. Polym Int 2001;50:1103–8. http://doi.wiley.com/10.1002/pi.752.

  41. Giancola C, De Sena C, Fessas D, Graziano G, Barone G. DSC studies on bovine serum albumin denaturation. Effects of ionic strength and SDS concentration. Int J Biol Macromol. 1997;20:193–204. http://www.ncbi.nlm.nih.gov/pubmed/9218168.

  42. Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int. 2009;42:1178–85. http://linkinghub.elsevier.com/retrieve/pii/S0963996909001756.

Download references

Acknowledgements

The authors would like to thank the financial support of CAPES and CNPq and State University of Ponta Grossa to SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Scremin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scremin, F.R., Veiga, R.S., Silva-Buzanello, R.A. et al. Synthesis and characterization of protein microcapsules for eugenol storage. J Therm Anal Calorim 131, 653–660 (2018). https://doi.org/10.1007/s10973-017-6302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6302-8

Keywords

Navigation