Skip to main content
Log in

Torrefied banana tree fiber pellets having embedded urea for agricultural use

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Banana tree fibers (BF) torrefied in the absence of air and residence time of 60 min at temperatures between 180 and 600 \(^\circ \hbox {C}\) were evaluated for its agglutination power when converted to pellets. The agglutination power was estimated as aqueous media residence time, being the most resistant pellets the ones obtained from 180 to 300 \(^\circ \hbox {C}\). The agglutination power was also evaluated for pellets samples containing from 10 to 90% (w/w) urea. BF torrefied with or without urea have been assessed by thermogravimetry (TG) and differential thermogravimetry (DTG), indicating increased stability on torrefaction temperature and the growth of urea. TG/DTG curves were also used to assess the kinetics of release of urea with time in aqueous by analyzing the residue of biochar BF. Kinetics of release was investigated using a semi-empirical model, known as the power law or the Korsmeyer–Peppas model, \(C_\mathrm{{t}}/C_{\mathrm{{inf}}}=kt^{\text{n}}\). The value found for n lies between 0.5 and 1.0 indicating that urea release mechanism tends to non-Fickian diffusion or anomalous transport. FTIR spectra showed the weak interaction between urea and biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. FAO-2015 Food and Agriculture Industry Association. The state of food insecurity in the world. http://www.fao.org/download/SOFI-i/ (2014). Accessed 15 May 2016.

  2. Loureiro FEL, Nascimento M. Importance and role of fertilizers in sustainable agriculture. Rio de Janeiro: CETEM/MCT; 1999.

    Google Scholar 

  3. FAO-2010. Food and Agriculture Organization. The state of food insecurity in the world: economic crises—impacts and lessons learned. Rome: FAO. http://www.fao.org/docrep/012/i0876e/i0876e00.htm (2009). Accessed 15 May 2014.

  4. Cerri CC, Cerri CEP. Agriculture and Global Warming. http://www.aquecimento.cnpm.embrapa.br/bibliografia/agr_e_aquec_Cerri_2007/ (2007). Accessed 15 May 2016.

  5. Loureiro FEL, Melamed R, Figueiredo Neto J. Fertilizer: agribusiness and sustainability. Rio de Janeiro: CETEM; 2008.

    Google Scholar 

  6. Borsari F. Smart fertilizers. Agro DBO. 2013. p. 54–57.

  7. Silva AA, et al. Application of different sources of urea with gradual release in corn. Biosci J. 2012;28(1):104–11.

    Google Scholar 

  8. Civardi EAC, et al. Slow-release urea applied to surface and regular urea incorporated to soil on maize yield. Pesqui Agropecu Trop. 2011;41(1):52–9.

    Article  Google Scholar 

  9. Shaviv A. Advances in controlled release of fertilizers. Adv Agron. 2000;71:1–49.

    Google Scholar 

  10. IFA. International Fertilizer industry Association. Slow-and controlled-release and stabilized fertilizers: an option for enhancing nutrient efficiency in agriculture. Paris, France. http://www.fertilizer.org/en/.../2010_Trenkel (2010). Accessed 15 May 2016.

  11. Rezende EIP, Ângelo LC, Santos SS, Mangrich AS. Biochar and carbon sequestration. Rev Virtual Quim. 2011;3(5):426–33.

    Article  CAS  Google Scholar 

  12. Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Change. 2006;11:403–27.

    Article  Google Scholar 

  13. Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, Azevedo ER, Souza AA, Song G, Nogueira CM, Mangrich AS. Lessons from the terra preta de índio of the Amazon region for the utilization of charcoal for soil amendment. J Braz Chem Soc. 2009;20(6):1003–10.

    Article  CAS  Google Scholar 

  14. Maia CMBF, Mandari BE, Novotny EH. Advances in biochar research Brazil. Dyn Soil Dyn Plant. 2011;5:53–8.

    Google Scholar 

  15. Lehmann J, Rillig MC, Thiesa J, Masielloc CA, Hockadayd WC, Crowleye D. Biochar effects on soil biota—a review. Soil Biol Biochem. 2011;43:1812–36.

    Article  CAS  Google Scholar 

  16. Spokas KA. Review of the stability of biochar in soils predictability of O: C molar ratios. Future Sci Group. 2010;1(2):289–303.

    CAS  Google Scholar 

  17. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62.

    Google Scholar 

  18. Santos LB, Striebeck MV, Crespi MS, Ribeiro CA. Characterization of biochar of pine pellet. J Therm Anal Calorim. 2015;122(1):21–32.

    Article  CAS  Google Scholar 

  19. Park J, Menga J, Limb KH, Rojasa OJ, Parka S. Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis. 2013;100:199–206.

    Article  CAS  Google Scholar 

  20. Saleh SB. Torrefaction of biomass for power production. 2013. (Ph D Thesis) Department of Chemical and Biochemical Engineering. Technical University of Demark. Lyngby; 2013.

  21. Luo X. Torrefaction of biomass—a comparative and kinetic study of thermal decomposition for Norway spruce stump, poplar end fuel tree chips. Swedish University of Agricultural Sciences (Department of Energy and Technology). http://stud.epsilon.slu.se (2011). Accessed 15 May 2016.

  22. Ramos DP, Leonel S, Mischan MM. Fruit physicochemical characterization of banana genotypes produced in Botucatu—SP. Ciênc Agrotecnologia. 2009;33:1765–70.

    Article  Google Scholar 

  23. Martins AN, Furlaneto FPB. Banana crop: research focused on family farming. Rev Tecnol Inov Agropec. 2008;1(2):77–86.

    Google Scholar 

  24. Torquato LDM, Crnkovic PM, Ribeiro CA, Crespi MS. New approach for proximate analysis by thermogravimetry, using CO2 atmosphere: validation and application to different biomass. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5882-z.

  25. Torquato LM, Braz CEM, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of the co-firing of bagasse-sludge blends. J Therm Anal Calorim. 2015;121:499–507.

    Article  CAS  Google Scholar 

  26. Saldarriaga JF, Aguado R, Pablos A, Amutio M, Olazar M, Bilbao J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel. 2015;140:744–51.

    Article  CAS  Google Scholar 

  27. American Society for Testing and Materials. E 1131–08: standard test method for compositional analysis by thermogravimetry. West Conshohocken: American Society for Testing and Materials. 2008. p. 6.

  28. Gonçalves APB, Miranda C, Guimares DH, Oliveira JC, Cruza AMF, Silva FLBM, Luporinia S, José NM. Physicochemical, mechanical and morpholic characterization of purple banana fiber. Mater Res. 2015;18(2):205–9.

    Article  Google Scholar 

  29. Mukhopadhyay S, Fangueiro R, Arpa Y, Senturk U. Banana fiber—variability and fracture behavior. J Eng Fiber Fabr. 2008;3(2):39–45.

    CAS  Google Scholar 

  30. Khalil HPSA, Alwani MS, Omar AKM. Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plants waste fiber. BioResourse. 2016;1(2):220–32.

    Google Scholar 

  31. Sellin N, Oliveira BG, Marangonia C, Souza O, Oliveira APN, Oliveira TMN. Use of banana culture waste to produce briquettes. Chem Eng T. 2013;32:349–554.

    Google Scholar 

  32. Keuleers R, Desseyn HO, Rousseau B, van Alsenoy C. Vibrational analysis of urea. J Phys Chem A. 1999;103:4621–30.

    Article  CAS  Google Scholar 

  33. Piasek Z, Urbanski T. The Infra-red absorption spectrum and structure of urea. Bull Acad Pol Sci. Ser Sci Chim. 1962;X(3):113–20.

    Google Scholar 

  34. Peng F, Bian J, Peng P, Guan Y, Xu F, Sun R-C. Fractional separation and structural features of hemicelluloses from sweet sorghum leaves. BioResources. 2012;7(4):4744–59.

    Article  Google Scholar 

  35. Stelte W, Sanadi AR, Shang L, Holm JK, Ahrenfeldt J, Henriksen UB. Recent developments in biomass pelletization—a review. BioResources. 2012;7(3):4451–90.

    Google Scholar 

  36. Fisher PHH, McDowell CA. The infrared absorption spectra of urea-hidrocarbon adduts. Can J Chem. 1950;28:187–93.

    Google Scholar 

  37. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.

    Article  CAS  Google Scholar 

  38. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.

    Article  CAS  Google Scholar 

  39. Jamnongkan T, Kaewpirom S. Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ. 2010;2010(18):413–21.

    Article  Google Scholar 

  40. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPESP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis A. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, D.S., Crespi, M.S., Torquato, L.D.M. et al. Torrefied banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim 131, 705–712 (2018). https://doi.org/10.1007/s10973-016-6049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6049-7

Keywords

Navigation