Skip to main content
Log in

Synthesis, spectral, thermal and insulin-enhancing properties of oxovanadium(IV) complexes of metformin Schiff-bases

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of VO2+ complexes of Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5); and 2-hydroxynaphthaldehyde (HL6) were synthesized by template reaction. The new compounds are characterized through elemental analysis, conductivity measurements, magnetic moment, IR, UV–Vis, ESR and mass spectroscopy. The complexes have square pyramidal structure with μ values of pentacoordinated vanadyl ion. TG, DTG and DTA confirm the proposed stereochemistry, and a mechanism of thermal decomposition was suggested. Mice treated with the complexes [VOL1H2O]·1½H2O and [VOHL4H2O]·2H2O showed glucose-lowering effect of 59.31, 58.79% (20 mg kg−1) and 64.98, 74.8% (40 mg kg−1) compared to metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Noblía P, Baran EJ, Otero L, Draper P, Cerecetto H, González M, Piro OE, Castellano EE, Inohara T, Adachi Y, Sakurai H, Gambino D. New vanadium(V) complexes with salicylaldehyde semicarbazone derivatives: synthesis, characterization, and in vitro insulin-mimetic activity-crystal structure of[VvO2(salicylaldehyde semicarbazone)]. Eur J Inorg Chem. 2004;2004:322–8.

    Article  Google Scholar 

  2. Delgado TC, Tomaz AI, Correia I, Jones JG, Geraldes GFGC, Castro MMCA. Uptake and metabolic effects of insulin mimetic oxovanadium compounds in human erythrocytes. J Inorg Biochem. 2005;99:2328–39.

    Article  CAS  Google Scholar 

  3. Sakurai H, Sano H, Takino T, Yasui H. An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J Inorg Biochem. 2000;80:99–105.

    Article  CAS  Google Scholar 

  4. Sakurai H, Tsuji A. In: Nriagu JO, editor. Vanadium in the environment, Par 2: health effects. New York: Wiley; 1998. p. 297.

    Google Scholar 

  5. Sakurai H, Fujii K, Fujimoto S, FujisawaY, Takechi K, Yasui H, in Tracy AS, Chans DC editors. Vanadium compounds: chemistry, biochemistry, and therapeutic applications, ACS Symposium Series 711, American Chemical Society, Washington, DC, 1998, p. 344.

  6. Sakurai H, Fujisawa Y, Fujimoto S, Yasaui H, Takino T. Role of vanadium in treating diabetes. J Trace Elem Exp Med. 1999;12:393–401.

    Article  CAS  Google Scholar 

  7. Durai N, Saminathan G. Insulin-like effects of bis-salicylidine ethylenediiminato oxovanadium(IV) complex on carbohydrate-metabolism. J Clin Biochem Nutr. 1997;22:31–9.

    Article  CAS  Google Scholar 

  8. Xie M, Xu G, Li L, Liu W, Niu Y, Yan S. In vivo insulin-mimetic activity of [N, N’-1,3-propyl-bis(salicyladimine)]oxovanadium(IV). Eur J Med Chem. 2007;42:817–22.

    Article  CAS  Google Scholar 

  9. Bastos AMB, da Silva JG, Maia PIS, Deflon VM, Batista AA, Ferreira AVM, Botion LM, Niquet E, Beraldo H. Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity. Polyhedron. 2008;27:1787–94.

    Article  CAS  Google Scholar 

  10. Mendes IC, Botion LM, Ferreira AVM, Castellano EE, Berlado H. Vanadium complexes with 2-pyridineformamide thiosemicarbazones: in vitro studies of insulin-like activity. Inorg Chim Acta. 2009;362:414–20.

    Article  CAS  Google Scholar 

  11. Nejo AA, Kolawole GA, Opoku AR, Wolowska J, OʼBrien P. Synthesis, characterization and preliminary insulin-enhancing studies of symmetrical tetradentate Schiff base complexes of oxovanadium(IV). Inorg Chim Acta. 2009;362:3993–4001.

    Article  CAS  Google Scholar 

  12. Moroki T, Yasui H, Adachi Y, Yoshizawa K, Tsubura A, Ozutsumi K, Katayama M, Yoshikawa Y. New insulin-mimetic and hypoglycemic hetero-binuclear Zinc(II)/oxovanadium(IV) complex. Curr Inorg Chem. 2014;4:54–8.

    Article  CAS  Google Scholar 

  13. Stepensky D, Friedman M, Srour W, Raz I, Hoffman A. Preclinical evaluation of pharmacokinetic–pharmacodynamic rationale for oral CR metformin formulation. J Control Release. 2001;71:107–15.

    Article  CAS  Google Scholar 

  14. Babykutty PV, Parbhakaran CP, Anantaraman R, Nair CGR. Electronic and infrared spectra of biguanide complexes of the 3d-transition metals. J Inorg Nucl Chem. 1974;36:3685–8.

    Article  CAS  Google Scholar 

  15. Subasinghe S, Greenbaum AL, McLean P. The insulin-mimetic action of Mn2+: involvement of cyclic nucleotides and insulin in the regulation of hepatic hexokinase and glucokinase. Biochem Med. 1985;34:83–92.

    Article  CAS  Google Scholar 

  16. Zhu M, Lu L, Yang P, Jin X. Bis(1,1-di-methyl-biguanido)copper(II) octahydrate. Acta Crystallogr. 2002;E58:m217–9.

    Google Scholar 

  17. Patrinoiu G, Patron L, Carp O, Stanica N. Thermal behaviour of some iron(III) complexes with active therapeutically biguanides. J Threm Anal Calorim. 2003;72:489–95.

    Article  CAS  Google Scholar 

  18. Olar R, Badea M, Cristurean E, Lazar V, Cernat R, Balotescu C. Thermal behavior, spectroscopic and biological characterization of Co(II), Zn(II), Pd(II) and Pt(II) complexes with N,N-dimethylbiguanide. J Therm Anal Calorim. 2003;80:451–5.

    Article  Google Scholar 

  19. Al-Saif FA, Refat MS. Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents. J Therm Anal Calorim. 2013;111:2079–96.

    Article  CAS  Google Scholar 

  20. Woo LCY, Yuen VG, Thompson KH, McNeill JH, Orvig C. Vanadyl–biguanide complexes as potential synergistic insulin mimics. J Inorg Biochem. 1999;76:251–7.

    Article  CAS  Google Scholar 

  21. Gao J. A weak hydrolytical copper(II) complex derived from condensation of N,N-dimethylbiguanide with 2-pyridinecarbaldehyde synthesis, crystal structure and biological activity. Synth React Inorg Met-Org Chem Nano-Met Chem. 2007;37:621–5.

    CAS  Google Scholar 

  22. Olar R, Badea M, Marinescu D, Iorgulescu E, Stoleriu S. Ni(II) complexes with ligands resulted in condensation of N,N-dimethylbiguanide and pentane-2,4-dione. J Therm Anal Calorim. 2005;80:363–7.

    Article  CAS  Google Scholar 

  23. Treviňo S, Sánshez-Lara E, Sarmiento-Ortega VE, Sánshez-Lombardo I, Flores-Hernádez JÁ, Pérez-Benítez A, Barmbila-Colombres E, González-Vergara E. Hypoglycemic, lipid-lowering and metabolic regulation activities of metforminium decavnadate (H2Metf)3[V10O28].8H2O using hypercaloric-induced carbohydrate and lipid deregulation in Wistar rates as biological model. J Inorg Biochem. 2015;147:85–92.

    Article  Google Scholar 

  24. Mahmoud MA, Zaitone SA, Ammar AM, Sallam SA. Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases. J Mol Struct. 2016;1108:60–70.

    Article  CAS  Google Scholar 

  25. Figgis BN, Lewis J. Magnetochemistry of complex compounds in modern coordination chemistry. In: Lewis J, Wilkins RG editor. New York: Wiley; 1960.

  26. Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med. 2004;54:252–7.

    CAS  Google Scholar 

  27. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  28. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part II: applications in coordination, organometallic, and bioinorganic chemistry. 5th ed. New York: Wiley; 1997.

    Google Scholar 

  29. Abd-Elzaher MM. Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc. J Chin Chem Soc. 2001;48:153–8.

    Article  CAS  Google Scholar 

  30. Boas LV, Bessoa JC. Vanadium, comprehensive coordination chemistry, vol. 3. In: Wilkinson G, Gillard RD, McCleverty JA editors. New York: Pergamon; 1978. p. 455.

  31. Kolawole GA, Patel KS. The stereochemistry of oxovanadium(IV) complexes derived from salicylaldehyde and polymethylenediamines. J Chem Soc Dalton Trans. doi:10.1039/DT9810001241.

  32. Patel KS, Kolawole GA, Earnshaw A. Spectroscopic and magnetic properties of Schiff base complexes of oxovanadium(IV) derived from 3-methoxysalicylaldehyde and aliphatic diamines. J Inorg Nucl Chem. 1981;43:3107–12.

    Article  CAS  Google Scholar 

  33. Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–9.

    Article  CAS  Google Scholar 

  34. Lever ABP. Electronic spectra of some transition metal complexes: derivation of Dq and B. J Chem Edu. 1968;45:711–2.

    Article  CAS  Google Scholar 

  35. Ballhausen CJ, Gray HB. the electronic structure of the vanadyl ion. Inorg Chem. 1962;1:111–22.

    Article  CAS  Google Scholar 

  36. Reynolds JG, Sendlinger SC, Murray AM, Huffman JC, Christou G. Synthesis and characterization of vanadium(II, III, IV) complexes of pyridine-2-thiolate. Inorg Chem. 1995;34:5745–52.

    Article  CAS  Google Scholar 

  37. Nejo AA, Kolawole GA, Opoku AR, Muller C, Wolowska J. Synthesis, characterization, and insulin-enhancing studies of unsymmetrical tetradentate Schiff-base complexes of oxovanadium(IV). J Coord Chem. 2009;62:3411–24.

    Article  CAS  Google Scholar 

  38. Kolawole GA, Patel KS. Spectroscopic and magneto-chemical investigation oxovanadium(IV) 5-chlorosalicylaldiimines. J Coord Chem. 1982;12:121–7.

    Article  Google Scholar 

  39. Cornman CR, Geiser-Bush KM, Rowley SP, Boyle PD. Structural and electron paramagnetic resonance studies of the square pyramidal to trigonal bipyramidal distortion of vanadyl complexes containing sterically crowded schiff base ligands. Inorg Chem. 1997;36:6401–8.

    Article  CAS  Google Scholar 

  40. Sasmal PK, Saha S, Majumdar R, De S, Dighe RR, Chakravarty AR. Oxovanadium(IV) complexes of phenanthroline bases: the dipyridophenazine complex as a near-IR photocytotoxic agent. Dalton Trans. 2010;39:2147–58.

    Article  CAS  Google Scholar 

  41. Yadava AK, Yadav HS, Saxena R, Rao DP. Syntheses and spectral studies of oxovanadium(IV) Schiff base complexes derived from 1,1′-oxalyldiimidazole and aromatic amines. Eur Chem Bull. 2015;4:356–9.

    CAS  Google Scholar 

  42. Lu L-P, Yang P, Qin S-D, Zhu M-L. Bis[1,1-di-methyl- biguanide(1–)-κ2N2, N5]copper(II) monohydrate. Acta Cryst. 2004;C60:m219–20.

    CAS  Google Scholar 

  43. Olar R, Dogaru A, Marinescu D, Badea M. New vanadyl complexes with metformin derivatives as potential insulin mimetic agents. J Therm Anal Calorim. 2012;110:257–62.

    Article  CAS  Google Scholar 

  44. Bauer G, Güther V, Hess V, Otto A, Roidl O, Roller H, Sattelberger S. Vanadium and vanadium compounds, Ullmann’s encyclopedia of industrial chemistry. London: Wiley; 2000.

    Google Scholar 

  45. Carp O, Gingasu D, Mindru I, Patron L. Thermal decomposition of some copper–iron polynuclear coordination compounds containing glycine as ligand, precursors of copper ferrite. Thermochim Acta. 2006;449:55–60.

    Article  CAS  Google Scholar 

  46. Nyquist RA, Kagel RO. Infrared spectra of inorganic compounds. New York: Academic Press; 1971.

    Book  Google Scholar 

  47. Arslan H, Özpozn N, Tarkan N. Kinetic analysis of thermogravimetric data of p-toluidino-p-chlorophenylglyoxime and of some complexes. Thermochim Acta. 2002;383:69–77.

    Article  CAS  Google Scholar 

  48. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetlogia. 2008;51:216–26.

    Article  CAS  Google Scholar 

  49. Swislocki AL, Noth R. Case report: pseudohepatotoxicity of metformin. Diab Care. 1998;21:677–8.

    CAS  Google Scholar 

  50. Cone CJ, Bachyrycz AM, Murata GH. Hepatotoxicity associated with metformin therapy in treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease. Ann Pharmacother. 2010;44:1655–9.

    Article  Google Scholar 

  51. Saadi T, Waterman M, Yassin H, Baruch Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int J Gen Med. 2013;6:703–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehab A. Sallam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A., Zaitone, S.A., Ammar, A.M. et al. Synthesis, spectral, thermal and insulin-enhancing properties of oxovanadium(IV) complexes of metformin Schiff-bases. J Therm Anal Calorim 128, 957–969 (2017). https://doi.org/10.1007/s10973-016-6018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6018-1

Keywords

Navigation