Skip to main content
Log in

Experimental investigation and thermodynamic re-assessment of the Mn–Gd binary system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, 13 Mn–Gd alloys prepared by arc-melting method were investigated experimentally by means of differential thermal analysis. The temperatures of the invariant reactions and liquidus in the Mn–Gd binary system were determined according to the measured thermal analysis curves. One key as-cast Mn70Gd30 alloy was examined using differential thermal analysis and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy to confirm the type of the invariant reaction (L + Mn23Gd6 ↔ Mn2Gd). Based on the critical review of the available experimental data measured in the present work and in the reported literature, the Mn–Gd binary system was assessed thermodynamically using the CALPHAD method. The solid solution phases including liquid, α-Mn, β-Mn, γ-Mn, δ-Mn, α-Gd and β-Gd are modeled by the substitutional solution model, while the intermetallic compounds such as GdMn2, Gd6Mn23 and GdMn12 are treated as the stoichiometric compounds. A set of self-consistent thermodynamic parameters obtained finally to describe the Gibbs energies of various phases in the Mn–Gd binary system can be used to reproduce well phase equilibria and thermodynamic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buschow KHJ. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys. 1997;40:1179–256.

    Article  Google Scholar 

  2. Szytula A, Buschow KHJ, editors. Magnetic properties of ternary intermetallic rare-earth compounds. Handbook of magnetic materials, vol. 6. Amsterdam: Elsevier; 1991. p. 85.

    Google Scholar 

  3. Gupta S, Suresh KG. Review on magnetic and related properties of RTX compounds. J Alloys Compd. 2015;618:562–606.

    Article  CAS  Google Scholar 

  4. Wang JL, Campbell SJ, Studer AJ, Avdeev M, Zeng R, Dou SX. Magnetic phase transitions in Pr1−xLuxMn2Ge2 compounds. J Phys Condens Mater. 2009;21:124217.

    Article  CAS  Google Scholar 

  5. Kumar P, Suresh KG, Nigam AK, Magnus A, Coelho AA, Gama S. Pressure-induced changes in the magnetic and magnetocaloric properties of RMn2Ge2(R = Sm, Gd). Phys Rev B. 2008;77:224427.

    Article  Google Scholar 

  6. Welter R, Venturini G, Ijjaali I, Malaman B. Magnetic study of the new TiNiSi-type TbMnSi, DyMnSi and NdMnGe compounds. J Magn Magn Mater. 1999;205:221–33.

    Article  CAS  Google Scholar 

  7. Morozkin AV, Seropegin YD, Sviridov IA, Riabinkin IG. Crystallographic data of new ternary Co2Si-type RTSi (R = Y, Tb-Tm, T = Mn, Ru) compounds. J Alloys Compd. 1999;282:L4–5.

    Article  CAS  Google Scholar 

  8. Klosek V, Vernière A, Ouladdiaf B, Malaman B. J Magn Magn Mater. 2003;256:373–80.

    Article  Google Scholar 

  9. Ovtchenkova IA, Nikitin SA, Ivanova TI. Magnetocaloric effect and magnetoresistance in GdxLa1−xMnSi compounds. J Magn Magn Mater. 2006;300:493–6.

    Article  Google Scholar 

  10. Ovtchenkova IA, Nikitin SA, Ivanova TI. Magnetic ording and magnetic transitions in GdMnSi compound. J Alloys Compd. 2008;451:450–3.

    Article  CAS  Google Scholar 

  11. Chen YQ, Luo J, Liang JK, Li JB, Rao GH. Magnetic properties and magnetocaloric effect of Nd(Mn1−xFeX)2Si2 compounds. J Alloys Compd. 2010;489:13–9.

    Article  CAS  Google Scholar 

  12. Kumar P, Singh NK, Suresh KG, Nigam AK. Magnetic and magnetocaloric properties of SmxGd1−xMn2Si2. J Alloys Compd. 2007;427:42–5.

    Article  CAS  Google Scholar 

  13. Yazdi ST, Tajabor N, Behdani M, Roknababi MR, Khoshnoud DS, Pourarian F. Magnetoelastic properties of GdMn6Sn6 intermetallic compound. J Magn Magn Mater. 2011;323:2070–5.

    Article  Google Scholar 

  14. Yazdi ST, Tajabor N, Roknababi MR, Behdani M, Pourarian F. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system. J Magn Magn Mater. 2014;361:126–31.

    Article  Google Scholar 

  15. Kimura S, Matsuo A, Yoshii S, Kindo K, Zhang L. High-field magnetization of RMn6Sn6 compounds with R = Gd, Tb, Dy and Ho. J Alloys Compd. 2006;408–412:169–72.

    Article  Google Scholar 

  16. Terenťev PB, Mushnikov NV, Gaviko VS, Shreder LA, Rosenfeld EV. Magnetic anisotropy of Tb1−xGdxMn6Sn6 compounds. J Magn Magn Mater. 2008;320:836–44.

    Article  Google Scholar 

  17. Liu XJ, Lu Y, Chen MH, Zhao DL, Wang CP, Ishida K. Thermodynamic database for phase diagrams of Mn-RE binary alloy systems. J Phase Equilib Diffus. 2014;35:612–20.

    Article  CAS  Google Scholar 

  18. Iddaoudi A, Selhaoui N, Kardellass S. Thermodynamic optimization of the Ho-Sn system. J Therm Anal Calorim. 2014;115:941–5.

    Article  CAS  Google Scholar 

  19. Iddaoudi M, Servant C. Thermodynamic optimization of the Yb-Sn system. J Therm Anal Calorim. 2011;103:131–5.

    Article  Google Scholar 

  20. Rong MH, Wang LY, Wang J, Zhu CF, Chen TL, Rao GH, Zhou HY. Experimental investigation and thermodynamic re-assessment of the Mn-Nd binary system. J Therm Anal Calorim. 2016;126:1437–45.

    Article  CAS  Google Scholar 

  21. Gröbner J, Pisch A, Schmid-Fetzer R. Thermodynamic optimization of the systems Mn-Gd and Mn-Y using new experimental results. J Alloys Compd. 2001;317–318:433–7.

    Article  Google Scholar 

  22. Kirchmayr HR, Lugscheider W. Constitution of binary alloys of gadolinium, dysprosium, holmium, and erbium with manganese. Z Metallkd. 1967;58:185–8.

    CAS  Google Scholar 

  23. Ivanov M, Berezutski V, Usenko N. Mixing enthalpies in liquid alloys of manganese with the lanthanides. Int J Mater Res. 2011;102:277–81.

    Article  CAS  Google Scholar 

  24. Marcos JS, Fernandez JR, Chevalier B, Bobet JL, Etourneau J. Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2. J Magn Magn Mater. 2004;272–276:579–80.

    Article  Google Scholar 

  25. Antion C. Etude du système Mg-Mn-Y-Gd et développement ďalliages de magnésium pour des applications structurales à chauď. Ph.D. thesis. Institut National Polytechnique de Grenoble, France; 2003.

  26. Kim J, Jung IH. Thermodynamic modelling of Mn-Y and Mn-Gd systems for application of RE in Mg alloy development. Can Metall Q. 2013;52:311–20.

    Article  CAS  Google Scholar 

  27. Kaufman L, Bernstein H. Computer calculation of phase diagrams. New York: Academic Press; 1970.

    Google Scholar 

  28. Okamoto H. Gd-Mn (gadolinium-manganese). J Phase Equilib. 2002;23:459.

    Article  CAS  Google Scholar 

  29. Nikolaenko IV, Nosova VV. Enthalpy of the mixing of gadolinium with manganese and iron. Ukr Khim Zh (Russ Ed). 1989;55:1260–2.

    CAS  Google Scholar 

  30. Dinsdale AT. SGTE data for pure elements. CALPHAD. 1991;15:317–425.

    Article  CAS  Google Scholar 

  31. Liu ZK, Zhang WJ, Sundman B. Thermodynamic assessment of the Co-Fe-Gd systems. J Alloys Compd. 1995;226:33–45.

    Article  CAS  Google Scholar 

  32. Buschow KHJ, Sherwood RC. Magnetic properties and hydrogen absorption in rare-earth intermetallics of the type RMn2 and R6Mn23. J Appl Phys. 1977;48:4643–8.

    Article  CAS  Google Scholar 

  33. Sundman B, Jansson B, Andersson JO. The thermo-calc databank system. CALPHAD. 1985;9:153–90.

    Article  CAS  Google Scholar 

  34. Kim JH, Paliwal M, Zhou S, Choi H, Jung IH. Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system. J Phase Equilib Diffus. 2014;35:670–94.

    Article  CAS  Google Scholar 

  35. De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK. Cohesion in Metals. Amsterdam: Elsevier; 1988.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51461013), National Basic Foundation of China (2014CB643703), the Guangxi Natural Science Foundation (2013GXNSFCA019017, 2014GXNSFBA118235, 2016GXNSFDA380015, 2016GXNSFGA380001) and the Research Foundation of Guangxi Education Department (2013YB088, KY2016YB166). The authors also acknowledge the Research Foundation of Graduate Education Innovation Program, Guilin University of Electronic Technology, China (YJCXS201568), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Wang or Maohua Rong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lin, S., Rong, M. et al. Experimental investigation and thermodynamic re-assessment of the Mn–Gd binary system. J Therm Anal Calorim 128, 1009–1018 (2017). https://doi.org/10.1007/s10973-016-6000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6000-y

Keywords

Navigation