Skip to main content
Log in

Synthesis and microcalorimetric determination of the bioactivities of a new Schiff base and its bismuth(III) complex derived from o-vanillin and 2,6-pyridinediamine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a new Schiff base [N,N′-bis(2-hydroxy-3-methoxyphenylmethylidene)-2,6-pyridinediamine, C21H19N3O4] and its bismuth(III) complex [Bi(C21H17N3O4)]Cl·2H2O were synthesized with o-vanillin and 2,6-pyridinediamine in ethanol and THF solvent, respectively. The compositions and structures of the two synthetic compounds were characterized by elemental analysis, chemical analysis, spectrum analysis (including MS, FT-IR, NMR, and UV–Vis), and thermogravimetric analysis. The thermogenic curves for the growth metabolism of Helicobacter pylori (H. pylori) and Schizosaccharomyces pombe (S. pombe) treated by different concentrations of the two synthetic compounds were determined by isothermal heat conduction microcalorimetry at 37.00 and 32.00 °C, respectively. Based on the thermogenic curves, some important thermokinetic parameters including the microbial growth rate constant (k), inhibition ratio (I), and half inhibition concentration (IC50) were calculated. The obtained results revealed that the Schiff base stimulated the growth of H. pylori, while the complex inhibited its growth. By contrast, both the Schiff base and the complex inhibited the growth of S. pombe, but the inhibitory effect of the complex was stronger than that of the Schiff base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu YW, Wang ZY, Liu Y, Wang CX, Qu SS, Deng FJ, Li FJ. Microcalorimetry study on the effect of Nd(III) ion on metabolism of mitochondria isolated from fish liver tissue. J Therm Anal Calorim. 2001;65:761–7.

    Article  CAS  Google Scholar 

  2. Li X, Liu Y, Wu J, Liang HG, Qu SS. The action of the selenomorpholine compounds on Escherichia coli growth by microcalorimetry. J Therm Anal Calorim. 2002;67:589–95.

    Article  CAS  Google Scholar 

  3. Yao J, Liu Y, Liang HG, Zhang C, Zhu JZ, Qin X, Sun M, Qu SS, Yu ZN. The effect of zinc(II) on the growth of E. coli studied by microcalorimetry. J Therm Anal Calorim. 2005;79:39–43.

    Article  CAS  Google Scholar 

  4. Yang LN, Sun LX, Xu F, Zhang J, Zhao JN, Zhao ZB, Song CG, Wu RH, Ozao R. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100:589–92.

    Article  CAS  Google Scholar 

  5. Wang CY, Xu F, Sun LX, Sun YJ, Qiu SJ, Zhao ZB, Tan HD, Wang S. Influences of levofloxacin salts on the metabolism of Escherichia coli by microcalorimetry. J Therm Anal Calorim. 2013;111:959–63.

    Article  CAS  Google Scholar 

  6. Xiao SX, Li AT, Li X, Li CH, Xiao HY, Huang S, Chen QS, Ye LJ, Li QG. The research on formation enthalpy of phenanthroline monohydrate and its influence on the growth metabolism of E. coli by microcalorimetry. J Therm Anal Calorim. 2014;115:2211–7.

    Article  CAS  Google Scholar 

  7. Jin JC, Xu ZQ, Dong P, Lai L, Lan JY, Jiang FL, Liu Y. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms. Carbon. 2015;94:129–41.

    Article  CAS  Google Scholar 

  8. Braissant O, Bachmann A, Bonkat G. Microcalorimetric assays for measuring cell growth and metabolic activity: methodology and applications. Methods. 2015;76:27–34.

    Article  CAS  Google Scholar 

  9. Phipps MA, Mackin LA. Application of isothermal microcalorimetry in solid state drug development. Pharm Sci Technol Today. 2000;3:9–17.

    Article  CAS  Google Scholar 

  10. Hou HN, Zhu JC, Liu Y, Li QG. Antibacterial activity of a kind of novel Schiff base and its 3d, 4f complexes. Acta Phys Sin. 2007;23:987–92.

    Article  CAS  Google Scholar 

  11. Backes GL, Neumann DM, Jursic BS. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg Med Chem. 2014;22:4629–36.

    Article  CAS  Google Scholar 

  12. Friedman M, Henika PR, Mandrell RE. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2003;66:1811–21.

    Article  CAS  Google Scholar 

  13. Jeewoth T, Bhowon MG, Wah HLK. Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diaminopyridine. Transit Met Chem. 1999;24:445–8.

    Article  CAS  Google Scholar 

  14. Li X, Jiang JH, Gu HW, Xiao SX, Li CH, Ye LJ, Li X, Li QG, Xu F, Sun LX. Calorimetric determination of the standard molar enthalpies of formation of o-vanillin and trimethoprim. J Therm Anal Calorim. 2015;119:721–6.

    Article  CAS  Google Scholar 

  15. Li X, Jiang JH, Xiao SX, Gu HW, Li CH, Ye LJ, Li X, He DG, Yao FH, Li QG. Synthesis, thermodynamic properties and BSA interaction of a new Valen Shiff base derived from o-vanillin and trimethoprim. Thermochim Acta. 2014;575:291–9.

    Article  CAS  Google Scholar 

  16. Xie JQ, Li CH, Dong JX, Qu W, Pan L, Peng ML, Xie MA, Tao X, Yu CM, Zhu Y, Zhang PH, Tang CG, Li QG. The standard molar enthalpy of formation of a new copper(II) Schiff-base complex and its interaction with bovine serum albumin. Thermochim Acta. 2014;598:7–15.

    Article  CAS  Google Scholar 

  17. Li CH, Jiang JH, Yang P, Tao LM, Li X, Xiao SX, Peng X, Tao X, Xie JQ, Zhu Y, Xie MA, Li QG. Preparation, structure, and thermochemical properties of a copper(II) Schiff-base complex. J Therm Anal Calorim. 2015;119:1285–92.

    Article  CAS  Google Scholar 

  18. Li CH, Tao X, Jiang JH, Li X, Xiao SX, Tao LM, Zhou JF, Zhang H, Xie MA, Zhu Y, Xia Z, Tang SM, Yuan HM, Li QG. Synthesis, crystal structure and spectroscopic studies of bismuth(III) complex with 2-substituted benzimidazole ligands. Spectrochim Acta, Part A. 2016;166:56–61.

    Article  CAS  Google Scholar 

  19. Li CH, Jiang JH, Li X, Tao LM, Xiao SX, Gu HW, Zhang H, Jiang C, Xie JQ, Peng MN, Pan LL, Xia XM, Li QG. Synthesis, crystal structure and biological properties of a bismuth(III) Schiff-base complex. RSC Adv. 2015;5:94267–75.

    Article  CAS  Google Scholar 

  20. Li X, Li QG, Zhang H, Hu JL, Yao FH, Yang DJ, Xiao SX, Ye LJ, Huang Y, Guo DC. Synthesis and bioactive studies of complex 8-hydroxyquinolinato-bis-(salicylato) yttrium (III). Biol Trace Elem Res. 2012;147:366–73.

    Article  CAS  Google Scholar 

  21. Jiang JH, Li X, Xiao SX, Gu HW, Li CH, Yang P, Wei DL, He DG, Li AT, Li X, Yao FH, Li QG. Interaction of 2-{[4-amino-5-(3,4,5-trimethoxy-benzyl)-pyrimidin-2-ylimino]-methyl}-6-methoxy-phenol with S. pombe cells and BSA. Chem J Chin Univ. 2014;35:831–8.

    CAS  Google Scholar 

  22. Li X, Jiang JH, Han BX, Gu HW, Xie ZF, Chen L, Xiao SX, Li CH, Li AT, Li X, Yao FH, Wang Q, Li QG. Synthesis and biological activities of o-vanillin-histidine Schiff-base and lanthanum Schiff-base complex. Chem J Chin Univ. 2015;36:856–63.

    CAS  Google Scholar 

  23. Arda M, Ozturk II, Banti CN, Kourkoumelis N, Manoli M, Tasiopoulos AJ, Hadjikakou SK. Novel bismuth compounds: synthesis, characterization and biological activity against human adenocarcinoma cells. RSC Adv. 2016;6:29026–44.

    Article  CAS  Google Scholar 

  24. Nomiya K, Sekino K, Ishikawa M, Honda A, Yokoyama M, Kasuga NC, Yokoyama H, Nakano S, Onodera K. Syntheses, crystal structures and antimicrobial activities of monomeric 8-coordinate, and dimeric 1 and monomeric 7-coordinate bismuth(III) complexes with tridentate and pentadentate thiosemicarbazones and pentadentate semicarbazone ligands. J Inorg Biochem. 2004;98:601–15.

    Article  CAS  Google Scholar 

  25. Jiang QY, Shen J, Zhong GQ. Synthesis of bismuth(III) complexes and coordination chemistry of bismuth(III). Prog Chem. 2006;18:1634–43.

    CAS  Google Scholar 

  26. Xiao SX, Zheng XF, Li WJ, Li CH, Jiang SL, Lu L, Li X, Han BX, Li QG. Synthesis, crystal structure and thermochemical study on a novel ternary coordination compound [Bi(C7H5O3)3C12H8N2]. J Therm Anal Calorim. 2015;120:1859–65.

    Article  CAS  Google Scholar 

  27. Battaglia LP, Corradi AB, Pelizzi G, Pelosi G, Tarasconi P. Chemical and structural investigations on bismuth complexes of 2,6-diacetylpyridine bis(2-thenoylhydrazone) and 2,6-diacetylpyridine bis(thiosemicarbazone). J Chem Soc, Dalton Trans. 1990;12:3857–60.

    Article  Google Scholar 

  28. Diemer R, Dittes U, Nuber B, Seifried V, Opferkuch W, Keppler BK. Synthesis, characterization and molecular structures of some bismuth(III) complexes with thiosemicarbazones and dithiocarbazonic acid methylester derivatives with activity against helicobacter pylori. Metal Based Drugs. 1995;2:271–92.

    Article  CAS  Google Scholar 

  29. Dittes U, Keppler BK, Nuber B. Synthesis and structure of seven-coordinate bismuth(v) complexes with benzenoid and non-benzenoid arene ligands: tri(aryl)tropolonatobismuth(v) complexes. Angew Chem Int Ed. 1996;35:67–8.

    Article  CAS  Google Scholar 

  30. Dittes U, Vogel E, Keppler BK. Overview on bismuth(III) and bismuth(V) complexes with activity against Helicobacter pylori. Coord Chem Rev. 1997;163:345–64.

    Article  CAS  Google Scholar 

  31. Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev. 1999;99:2601–58.

    Article  CAS  Google Scholar 

  32. Casas JS, Garcia-Tasende MS, Sordo J. Main group metal complexes of semicarbazones and thiosemicarbazones. a structural review. Coord Chem Rev. 2000;209:197–261.

    Article  CAS  Google Scholar 

  33. Guo Z, Sadler PJ. Metals in medicine. Angew Chem Int Ed. 1999;38:1512–31.

    Article  CAS  Google Scholar 

  34. Thompson KH, Orvig C. Boon and bane of metal ions in medicine. Science. 2003;300:936–9.

    Article  CAS  Google Scholar 

  35. Li MX, Yang M, Niu J, Zhang LZ, Xie SQ. A nine-coordinated bismuth(III) complex derived from pentadentate 2,6-diacetylpyridine bis(4N–methylthiosemicarbazone): crystal structure and both in vitro and in vivo biological evaluation. Inorg Chem. 2012;51:12521–6.

    Article  CAS  Google Scholar 

  36. Li X, Lu YL, Yang M, Li YK, Zhang LZ, Xie SQ. One dodecahedral bismuth(III) complex derived from 2-acetylpyridine N(4)-pyridylthiosemicarbazone: synthesis, crystal structure and biological evaluation. Dalton Trans. 2012;41:12882–7.

    Article  CAS  Google Scholar 

  37. Li MX, Zhang LZ, Yang M, Niu JY, Zhou J. Synthesis, crystal structures, in vitro biological evaluation of zinc(II) and bismuth(III) complexes of 2-acetylpyrazine N(4)-phenylthiosemicarbazone. Bioorg Med Chem Lett. 2012;22:2418–23.

    Article  Google Scholar 

  38. Zhang LZ, An GY, Yang M, Li MX, Zhu XF. Synthesis, characterization, crystal structure and biological activities of the unusual main group 8-coordinate bismuth(III) complex derived from 2-acetylpyrazine N 4-pyridylthiosemicarbazone. Inorg Chem Commun. 2012;20:37–40.

    Article  Google Scholar 

  39. Galić N, Matković-Čalogović D, Cimerman Z. Structure and spectroscopic characteristics of N, N′-bis(2-hydroxy-3-methoxyphenylmethylidene)-2,6-pyridinediamine. Struct Chem. 2000;11:361–5.

    Article  Google Scholar 

  40. Kaya İ, Bilici A, Gül M. Schiff base substitute polyphenol and its metal complexes derived from o-vanillin with 2,3-diaminopyridine: synthesis, characterization, thermal, and conductivity properties. Polym Adv Technol. 2008;19:1154–63.

    Article  CAS  Google Scholar 

  41. Galić N, Cimerman Z, Tomišić V. Spectrometric study of tautomeric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu(II). Spectrochim Acta, Part A. 2008;71:1274–80.

    Article  Google Scholar 

  42. Li X, Jiang JH, Chen QQ, Xiao SX, Li CH, Gu HW, Zhang H, Hu JL, Yao FH, Li QG. Synthesis of nordihydroguaiaretic acid derivatives and their bioactivities on S. pombe and K562 cell lines. Eur J Med Chem. 2013;62:605–13.

    Article  CAS  Google Scholar 

  43. Kaya İ, Doǧan F, Bilici A. Schiff base-substituted polyphenol: synthesis, characterisation and non-isothermal degradation kinetics. Polym Int. 2009;58:570–8.

    Article  CAS  Google Scholar 

  44. Zhou YM, Ye XR, Xin FB, Xin XQ. Solid state self-assembly synthesis of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with a bis-Schiff base. Transit Met Chem. 1999;24:118–20.

    Article  CAS  Google Scholar 

  45. Ilhan S, Temel H, Yilmaz I, Şekerci M. Synthesis and eharacterization of new rnacrocyclic Schiff base derived from 2,6-diaminopyridine and 1,7-bis(2-formyphenyl)-1,4,7trioxaheptane and its Cu(II), Ni(II), Pb(II), Co(II) and La(III) complexes. Polyhedron. 2007;26:2795–802.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 21273190 and 20973145), the Science and Technology Department Foundation of Hunan Province (Grant No. 2014TT2026), and the Educational Committee Foundation of Hunan Province (Grant Nos. 15C1272, 15A175, and 14A134). Prof. Qiang-Guo Li (E-mail: liqiangguo@163.com) is the chief-director of these fund projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Wen Gu or Qiang-Guo Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, CH., Jiang, JH. et al. Synthesis and microcalorimetric determination of the bioactivities of a new Schiff base and its bismuth(III) complex derived from o-vanillin and 2,6-pyridinediamine. J Therm Anal Calorim 127, 1767–1776 (2017). https://doi.org/10.1007/s10973-016-5892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5892-x

Keywords

Navigation